The input must be a formula of pure first-order logic. Do not use free variables, names, identity or mathematical functions. Expressions containing these symbols are accepted as well-formed but do not evaluate properly.
This is the key for Input Forms of Traditional Forms:
Traditional Form | Input Form | Alternative Input Form |
---|---|---|
∀var scope | ForAll[var, scope] | A[var, scope] |
∃var scope | Exists[var, scope] | E[var, scope] |
¬ p | Not[p] | !p, !(p) |
p ⋀ q | And[p,q] | p && q, (p && q) |
p ⋁ q | Or[p,q] | p || q, (p || q) |
p → q | Implies[p,q] | |
p ≡ q | Equivalent[p,q] | |
p ⊽ q | Nor[p,q] | |
p ⊼ q | Nand[p,q] | |
p ⊻ q | Xor[p,q] | |
The following examples may help to get used to the syntax in the Mathematica style:
Traditional Form | Input Form |
---|---|
p && E[y, E[z, !f[z,y]]] && A[x, f[x,x]] | |
A[x, E[y, A[z, f[x,y] && !f[z,z]]]] | |
Not[A[x, E[y, f[x,y]]] && E[y, A[x, f[x,y]]]] | |
A[x, E[y, f[x,y] && !f[y,x] && f[y,y] && !f[x,x]]] | |
A[x, E[y, A[z, f[x,y] && !f[x,x] && (!f[y,z] || f[x,z])]]] | |
A[x[1], E[y[1], E[y[2],A[x[2],f[x[1],y[1]] && !f[y[2],x[2]]]]]] |
Further examples:
Traditional Form: | ||
Input Form: | A[x[1], E[x[2], E[x[3], A[x[4], E[x[5], f[x[2], x[1], x[5]] && ! f[x[4], x[3], x[5]]]]]]] | |
Traditional Form: | ||
Input Form: | A[x[1], E[y[1], A[x[2], E[y[2], ((f[x[1], y[1]] && !f[y[2], x[2]]) || (!f[y[1], y[2]] && f[x[1], x[2]]))]]]] | |
Traditional Form: | ||
Input Form: | A[x[1], E[y[1], E[y[2], A[x[2], E[y[3], (f[y[1],x[1],y[3]] && f[y[1],x[2],y[3]] && ! f[x[2],y[2],y[3]])]]]]] | |
Traditional Form: | ||
Input Form: | A[y[1],E[x,A[y[2],P[y[1], y[1]] && (!P[y[1], y[2]] || Q[x, y[2]]) && (!Q[y[1], y[2]] || Q[x, y[2]]) && !Q[y[1], y[1]]]]] | |
Traditional Form: | ||
Input Form: | A[x[1], !f[x[1]] || A[x[2], f[x[2]] || !g[x[1],x[2]]]] && E[y[1], f[y[1]] && E[y[2], !f[y[2]] && E[y[3], g[y[1], y[3]] && g[y[3], y[2]]]]] | |
Traditional Form: | ||
Input Form: | E[y[1], E[y[2], A[x[1], (E[y[3], f[x[1],y[3]] && !f[y[1], y[3]] && A[x[2], h[x[2], y[3]]]]) || (E[y[4], g[x[1], y[4]] && ! g[y[2], y[4]] && A[x[3], ! h[y[4], x[3]]]])]]] | |
Traditional Form: | ||
Input Form: | E[y[6],E[y[3],f[y[3],y[6]] && A[x[1],E[y[2], E[y[1], f[y[2], y[1]]] && f[y[2], x[1]]] || f[y[3], x[1]]]] && A[x[2], E[y[5], E[y[4], f[y[5], y[4]]] && f[y[5], x[2]]] || f[y[6], x[2]]]] |
© Timm Lampert / 2018-04-09