CHAPTER 28

Model Elimination and Connection
Tableau Procedures

Reinhold Letz

Gernot Stenz
SECOND READERS: Peter Baumgartner and Uwe Petermann.

Contents

1 Introduction e e e
2 Clausal Tableaux and Connectedness
2.1 Preliminaries e e e e e
2.2 Inference Rules of Clausal Tableaux
2.3 Connection Tableaux i it i ittt
2.4 Proof Search in Connection Tableaux
2.5 Completeness Boundsttt
2.6 Subgoal Processing it e e e e e
2.7 Connection Tableaux and Related Calculi
3 Further Structural Refinements of Clausal Tableaux
3.1 Regularity e e e
3.2 Tautology Elimination e
3.3 Tableau Clause Subsumption,
3.4 Strong Connectedness v oo it it i e e e
3.5 Use of Relevance Information,
4 Global Pruning Methods in Model Elimination
41 Matings Pruning L e e e e
4.2 Tableau Subsumption e
4.3 FailureCaching iy
5 Shortening of Proofs v . . o i e e e e e e
5.1 Factorization i e e e
52 TheFoldingUpRule
53 TheFoldingDownRule
5.4 Universal and Local Variables.
6 Completeness of Connection Tableaux
6.1 Structurally Refined Connection Tableaux
6.2 Enforced Folding and Strong Regularity
7 Architectures of Mode! Elimination Implementations

HANDBOOK OF AUTOMATED REASONING
Edited by Alan Robinson and Andrei Voronkov
© 2001 Elsevier Science Publishers B.V. All rights reserved

10

7.1 Basic Data Structures and Operations 2071

7.2 Prolog Technology Theorem Proving« ... 2076
7.3 Extended Warren Abstract Machine Technology 2078
7.4 Using Prolog as an Implementation Language 2084
7.5 A Data Oriented Architecture 2086
7.6 Existing Model Elimination Implementations 2092
Implementation of Refinements by Constraints 2092
8.1 Reformulation of Refinements as Constraints 2092
8.2 Disequation Constraints e e 2094
8.3 Implementing Disequation Constraints 2096
8.4 Constraints for Global Pruning Methods 2101
Experimental Results e e 2102
9.1 Test Problem Set and Experimental Environment 2102
9.2 Regularity e e 2103
9.3 Completeness Bounds« v v vttt i e e e e e 2103
9.4 Relevance Information o o oo, 2104
9.5 FailureCaching 2105
96 FoldingUp i i e 2106
9.7 Dynamic Subgoal Reordering o o oo, 2107
9.8 SUMMAIY . . . ¢ v v i ittt e e e e e e e e e e e 2107
Outlook L e e e e e e e e e e e 2107
Bibliography e e 2109

IndexX i it e 2113

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2017

1. Introduction

The last years have seen many efforts in the development, implementation and
application of automated deduction systems. Currently, the most successful the-
orem provers for classical first-order logic are either based on resolution or on
model elimination [Sutcliffe and Suttner 1998]. While resolution is treated in other
chapters of this Handbook, see [Bachmair and Ganzinger 2001, Weidenbach 2001]
(Chapters 2 and 27), this chapter presents the state-of-the-art of theorem prov-
ing using model elimination. Historically, model elimination has been presented in
different conceptual frameworks. While the very first paper [Loveland 1968] used
a tree-oriented format, a restricted and more resolution-oriented chain notation
[Loveland 1969, Loveland 1978] has become the standard for some twenty years.

This changed about ten years ago, when it was recognized that it is more natu-
ral to view model elimination as a particular refinement of the tableau calculus, in
which connections are employed as a control mechanism for guiding the proof search.
In order to emphasize this approach, we introduced the term ”connection tableaux”
[Schumann and Letz 1990, Letz, Schumann, Bayerl and Bibel 1992, Letz 1993, Letz,
Mayr and Goller 1994]. This view had a very fruitful effect on the research in the
field. In the meantime, many calculi and proof procedures developed in automated
deduction, such as SLD-Resolution, the connection method or systems like Satchmo
and MGTP, have been reformulated in tableau style. As a positive result of these
activities, the similarities and differences between many calculi with formerly un-
clear relations could be identified. Furthermore, new calculi have been developed
which are based on tableaux and integrate connections in different manners, see,
e.g., [Hahnle 2001] (Chapter 3 of this Handbook). The main advantages of view-
ing model elimination as a tableau calculus are the following. On the one hand,
more powerful search pruning mechanisms can be identified. On the other hand,
the completeness proofs are simplified significantly.

Since model elimination is one of the main paradigms in automated deduction,
a wealth of methods for improving the basic proof procedure have been developed.
Many of these methods, however, have a very limited effect, since they improve the
performance only for few, often pathological examples. Therefore, we have concen-
trated on methods that have generally proven successful. Furthermore, we have put
emphasis on the presentation of the main paradigms for an efficient implementation
of model elimination and its refinements.

When trying to classify the methods of redundancy elimination developed for
model elimination, one naturally ends up with three categories. Since in model elim-
ination or connection tableaux the manipulated inferential objects are not clauses
but tableaux, which are entire deductions, a significant number of techniques have
been developed which permit to identify certain deductions as redundant just be-
cause of their internal structures. These techniques, among which the property of
regularity is most important, constitute the first class of improvements, which may
be termed as structural or local methods of search pruning. Another source of re-
dundancy in proof search results from the fact that typically certain deductions are
redundant in the presence of other ones. These global approaches of inter-tableau

2018 REINHOLD LETZ AND GERNOT STENZ

pruning form the second class of methods for redundancy elimination. A prominent
example of such a method is failure caching. The final improvement of pure model
elimination has to do with the length of proofs. Even minimal proofs may become
rather long when compared with other calculi. This is because pure model elimi-
nation is cut-free and the generated deduction objects are trees. Consequently, a
proof may contain the same subproof more than once. A further difference between
model elimination and calculi such as resolution is that free variables in a tableau
are normally considered as rigid, in the sense that every variable can be used in one
instantiation only. We describe the main methods to overcome these deficiencies,
which are controlled cuts and universal variables.

When it comes to the implementation of a theorem prover based on model elim-
ination, we have a very special situation. This is because model elimination is very
close to SLD-resolution, which is the basic inference system of the programming
language Prolog. Consequently, one can take advantage of this proximity by us-
ing as much as possible from the implementation techniques developed for Prolog.
One successful such approach is to extend abstract machine technology from the
Horn case to the full clausal case. Another possibility consists in taking Prolog
itself as a programming language, by which reasonably efficient implementations
of model elimination can often be obtained with no or only very little implemen-
tational effort. Both of these approaches will be described in detail. But the close
relation of model elimination to Prolog may also have negative effects. Especially,
it is very difficult to implement refinements of model elimination which do not fit
with the basic working principles of Prolog. For example, there is no easy way of
integrating equality handling or theory reasoning into an abstract machine. Or,
when using Prolog as programming language, it is very difficult to implement a
different backtracking mechanism. This has motivated us to develop and present a
further implementation architecture which is more modular and flexible and which
strongly differs from the ones based on Prolog or Prolog techniques. The key idea
for achieving high efficiency in this approach is the extensive re-use of the results
of expensive operations.

The development of a redundancy elimination technique is one thing, its efficient
implementation is another one. Fortunately, many of the refinements developed for
model elimination may be formulated in a uniform general setting, as conditions
on the instantiations of variables, so-called disequation constraints. In the final
section, we develop the general framework of disequation constraints including uni-
versal variables and normalization, and we describe in detail how efficient constraint
handlers may be implemented.

2. Clausal Tableaux and Connectedness

2.1. Preliminaries

Before starting with the presentation of clausal tableaux, the meaning of some
basic concepts and notations has to be defined. We are working on formulae in

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2019

clause logic and use standard conventions for denoting logical symbols and formu-
lae. Our alphabet consists of individual variables, function and predicate symbols
with arities > 0, the logical connectives - (negation), V (disjunction) and A (con-
junction), the universal and the ezistential quantifiers V respectively 3, plus the
comma and the parentheses as punctuation symbols. A term is either a variable
or a string of the form a(ty,...,t,) where a is a function symbol of arity n and
the ¢; are terms. An atomic formula is a string of the form a(ti,...,t,) where a
is a predicate symbol of arity n and the t; are terms. Expressions of the form a()
are conveniently abbreviated by writing just a. First-order formulae, occurrences
of expressions in other expressions, the scope of quantifier occurrences, and what
it means that a variable occurs free or bound in an expression are defined as usual.

‘We emphasize the special notions used in this work. The complement of a formula
F is G if F is of the form ~G, and —F otherwise; the complement of a formula is
abbreviated as ~F. A literal is either an atomic formula or an atomic formula with
a negation sign in front of it. A clause is a disjunction of literals, i.e., either a literal,
called a unit clause, or a string of the form L; V ---V L, where the L; are literals.
A Horn clause is a clause containing at most one positive literal. A clausal formula
is a conjunction of clauses, i.e., either a clause or a string of the form ¢; A---Ac,
where the c; are clauses.

A substitution o is any mapping of variables to terms; for any (sequence of)
expression(s) F, we abbreviate with Fo the (sequence of) expression(s) obtained
by simultaneously replacing every free occurrence of a variable in F' with its value
under ¢; Fo is called an instance of F. The tuples (z,t) in a substitution with z # ¢
are called bindings and abbreviated by writing z/¢. Normally, a substitution will
be denoted by giving the set of its bindings. If {z1/t1,z2/t2,z3/t3,...} is (the set
of bindings of) a substitution o, then {z;,z2,3,...} and {t1,%3,1s,...} are called
the domain and the range of o, respectively. Given two (sequences of) expressions
F and G, when a substitution o satisfies Fo = Go, then o is called a unifier for F
and G. Some specializations of the unifier concept are of high importance. A unifier
o for F and G is termed a most general unifier if, for every unifier v for F' and
G, there is a substitution 8 with ¢ = 1; o is a minimal unifier if the set of its
bindings has minimal cardinality. To illustrate the difference, given three distinct
variables z,y, z, then {z/y} is a minimal unifier for the terms z and y whereas the
substitution {z/y, z/z} is a most general unifier, but no minimal unifier. Finally, a
unifier o is idempotent if o = oo. It holds that any minimal unifier is idempotent
and most general. Since nearly all unification algorithms return minimal unifiers,
we will prefer that term throughout this chapter.

Subsequently, we will preferably employ special meta-expressions for the deno-
tation of formulae and their components. For individual variables we will normally
use the letters u,v,w,z,y, 2; constants are nullary function symbols and are de-
noted with the letters a, b, ¢, d; for function symbols of arity > 0 we use f,g,h;
predicate symbols are denoted with P, Q, R, nullary predicate symbols are denoted
with lower case letters; subscripts will be used when needed.

2020 REINHOLD LETZ AND GERNOT STENZ

2.2. Inference Rules of Clausal Tableauz

Clausal tableaux are trees labelled with literals (and other control information)
inductively defined as follows.

2.1. DEFINITION (Clausal tableau). Let S be a set or conjunction of clauses
€1,.--,Cn- A tree consisting of just one unlabelled node is a clausal tableau for
S. The single branch of this tree is considered as open. If B is an open branch in
a clausal tableau T for S with leaf node N (called subgoal), then the formula trees
obtained from the following two inference rules are clausal tableauz for S:
(Expansion rule) Select a clause ¢; in S and simultaneously replace all its vari-
ables with distinct new variables not occurring in T'. Let Ly V --- V L, be
the resulting clause. Then attach n new nodes as successors of the subgoal N
and label them with the literals Ly,...,Ly,, respectively. The new branches are
considered as open.
(Closure or reduction rule) If the subgoal N with literal label K has an ancestor
node N' with literal L on the branch B such that there exists a minimal unifier
o for K and the complement ~L of L, then obtain the tableau To, that is,
apply the substitution o to the literals in T'. Now the branch B is considered

as closed.!
~R(f(z)) “R(f(f(f(=))))
R(f(z)) R(f(f(=))) R(f(f(£(=)))) R(f(f(£(£(=)))))
-R(z) =R(f(f(z))) =R(f(f(z))) -R(f(f(f(f(2))))
R(z) R(f(z)) R(f(f(z))) R(f(£(£(=))))

Figure 1: A closed clausal tableau for the formula S consisting of the two clauses
R(z) vV R(f(z)) and ~R(z) V ~R(f(f(2)))-

Figure 1 displays a closed clausal tableau, i.e., a tableau with the closure rule
applied to all its branches, which we indicate with an asterisk at the end of each
branch. In the figure, the unifiers resulting from the closure steps are already applied
to the tableau. In general, variables in clausal tableaux are considered as rigid, i.e.,
just as place holders for arbitrary ground terms. In Section 5, it will be shown
that this condition can be weakened for certain variables. The example shows the

1A branch is closed by applying an inference rule. There are no implicit branch closures.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2021

necessity of renaming variables. Without renaming it would be impossible to unify
the second literal in the first clause with the complement of the second literal in
the second clause, which is done, for example, in the second closure step on the left.
Furthermore, multiple copies of the same input clauses are needed.

Let us make some remarks regarding the peculiarities of this definition as com-
pared with the more familiar definition of tableaux. For one thing, we carry the
input set or formula S alongside the tableau and do not put its members at the
beginning of the tableau, we leave the root unlabelled instead. This facilitates the
comparison of tableaux for different input sets. For example, one tableau may be
an instance of another tableau, even if their input sets differ. Also, a branch is
considered as closed only if the closure rule was explicitly applied to it, all other
branches are considered as open, even when they are complementary. This precau-
tion simplifies the presentation, in particular, of the proof of the Lifting Lemma
(Lemma 6.5), and more adequately reflects the actual situation when implementing
tableaux.

The clausal tableau calculus is sound and complete, that is, for every set of
clauses S, there exists a closed clausal tableau for S if and only if S is unsatisfiable.
Furthermore, the clausal tableau calculus is (proof) confluent, i.e., every clausal
tableau for an unsatisfiable input formula S can be completed to a closed clausal
tableau for S.

Clausal tableaux provide a large potential for refinements, i.e., for imposing ad-
ditional restrictions on the tableau construction. For instance, one can integrate
ordering restrictions [Klingenbeck and Hahnle 1994] as they are successfully used
in resolution-based systems (see also Chapter 3 in this Handbook). The most impor-
tant structural refinement of clausal tableaux with respect to automated deduction,
however, is to use links or connections to guide the proof search.

2.3. Connection Tableauz

Some additional notation will be useful.

2.2. DEFINITION (Tableau clause). For any non-leaf node N in a clausal tableau,
the set of nodes MNy,..., N, immediately below N is called the node family below
N; if the nodes Ny,...,N,, are labelled with the literals L, ..., L,, respectively,
then the clause Ly V --- V L, is named the tableau clause below N; The tableau
clause below the root node is called the start or top clause of the tableau.

A closer look at the tableau displayed in Figure 1 reveals an interesting structural
property. In every node family below the start clause, at least one node has a
complementary ancestor. This property can be formulated in two variants, a weaker
one and a stronger one.

2022 REINHOLD LETZ AND GERNOT STENZ

2.3. DEFINITION (Path connectedness, connectedness).

1. A clausal tableau is said to be path connected (or weakly connected) iff, in every
node family below the start clause, there is one node with a complementary
ancestor.

2. A clausal tableau is said to be connected (or tightly connected) iff, in every node
family below the start clause, there is one node which is complementary to its
predecessor.

A (path) connected tableau is also called (path) connection tableau.

With the connection conditions, every clause has a certain relation to the start
clause. This allows a goal-oriented form which may be used to guide the proof
search.

Let us make some brief historical remarks on the réle of connections in tableaux.
The notion of a connection is a central concept in automated deduction whereas
tableau calculi, traditionally, have no reference to connections—as an example,
note that the notion does not even occur in [Fitting 1996]. On the other hand,
it was hardly noticed in the field of automated deduction and logic programming
that calculi like model elimination [Loveland 1968, Loveland 1978], the connec-
tion calculi in [Bibel 1987, or SLD-resolution [Kowalski and Kuehner 1970] should
proof-theoretically be considered as tableau calculi. This permits, for instance, to
view the calculi as cut-free proof systems. The relation of these calculi to tableaux
has not been recognized, although, for example, the original presentation of model
elimination [Loveland 1968] is clearly in tableau style. The main reason for this
situation may be that until recently both communities (tableaux and automated
deduction) were almost completely separated. As a further illustration of this fact,
note that unification was not really used in tableaux before the end of the eighties
[Reeves 1987, Fitting 1990]. In Section 2.7, we will clarify the relation of connection
tableaux with model elimination, SLD-resolution, and the connection method.

In order to satisfy the connectedness conditions, for every tableau expansion
step except the first one, the closure rule has to be applied to one of the newly
attached nodes. This motivates to amalgamate both inference rules into a new
macro inference rule.

2.4. DEFINITION ((Path) eztension rule). The (path) extension rule is defined as
follows: perform a clausal expansion step immediately followed by a closure step
unifying one of the newly attached literals, say L, with the complement of the literal
at its predecessor node (at one of its ancestor nodes); the literal L and its node are
called entry or head literal and entry or head node, respectively.

The building of such macro inference rules is a standard technique in automated
deduction to increase efficiency. With these new rules, the clausal tableau calculi
can be reorganized.

2.5. DEFINITION ((Path) connection tableau calculus). The (path) connection ta-
bleau calculus consists of the following three inferences rules:

MOoDEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2023

o the (path) extension rule,

e the closure or reduction rule,

e and the start rule, which is simply the expansion rule, but restricted to only
one application, namely the attachment of the start clause.

A fundamental proof-theoretical property of the two connection tableau calculi is
that they are not proof confluent, as opposed to the general clausal tableau calculus.
This can easily be recognized, for instance, by considering the unsatisfiable set of
unit clauses S = {p, g, ~q}. If we select p as start clause, then the tableau cannot be
completed to a closed tableau without violating the (path) connectedness condition.
In other terms, using the (path) connectedness condition, one can run into dead
ends. The important consequence to be drawn from this fact is that, for those
tableau calculi, systematic branch saturation procedures of the type presented in
[Smullyan 1968] do not exist. Since an open connection tableau branch that cannot
be expanded does not guarantee the existence of a model, connection tableaux are
therefore not suited for model generation. Weaker connection conditions that are
compatible with model generation are described in [Billon 1996, Baumgartner 1998,
Baumgartner, Eisinger and Furbach 1999] and in [Hihnle 2001] (Chapter 3 of this
Handbook).

2.4. Proof Search in Connection Tableauz

When using non-confluent deduction systems like the connection tableau calculi, in
order to find a proof, in general, all possible deductions have to be enumerated in a
fair manner until the first proof is found. The search space for a tableau enumeration
procedure can be defined as a tree of tableaux.

2.6. DEFINITION ((Tableau) search tree). Let S be a set of formulae and C a
tableau calculus. The corresponding (tableau) search tree is a tree T labelled with
tableaux defined by induction on its depth.
1. The root of T is labelled with the trivial tableau, consisting just of a root node.
2. Every non-leaf node N of depth n in 7 has as many successor nodes as there
are successful applications of a single inference step in the tableau calculus C
applied to the tableau at the node N and using formulae from S; the successor
nodes of NV of depth n+1 are labelled with the resulting tableaux, respectively.
The leaf nodes of a (tableau) search tree can be partitioned into two sets of nodes,
the ones labelled with tableaux that are closed, called success nodes, and the others
which are labelled with open tableaux to which no successful inference steps can be
applied, called failure nodes. Closed tableaux occurring in a search tree are proofs.

It is important to note that the search spaces of tableau calculi cannot be repre-
sented by familiar and-or-trees in which the and-nodes represent the tableau clauses
and the or-nodes the alternatives for expansion. Such a more compact representa-
tion is not possible in the first-order case, because the branches in a free-variable
tableau cannot be treated independently.

2024

REINHOLD LETZ AND GERNOT STENZ

/\

~P(2) ~P(f(a) P(a) P(f(a)
=P(a)~P(f(a)}| ~P(f(a)P(f(f(a))]| ~P(a) ~P(f(a) /PQ P(f(a)) ;Q))
Psa) P(!(o)) P(f.(a) "P(_u) =P(f(a) -vP(f(:))-P(!(f(u)) -P(a) "P(.l(d)
/\ dead end dead end I
~P(a)~P(f(a) ~P(a)~P(f(a) /P< }(Q))
P(:) P(I.(a)) P(.u) 'P({(c) -'P(.ﬂ) ~P(f(a) "P(ﬂ)-'P(‘_f(u)

P(j(a) P(a)
- -

Figure 2: The connection tableau search tree for the set S consisting of the three
clauses =P(z) V =P(f(z)), P(a), and P(f(a)).

In Figure 2, the complete connection tableau search tree for a set of clauses is
given. For this simple example, the search tree is finite. Note that the search space of
the general clausal tableau calculus (without a connection condition) is infinite for
S. This is but one example for the search pruning effect achieved by the connection
conditions.

In order to find a connection tableau proof, the corresponding (normally infinite)
search tree has to be explored. This can be done ezplicitly by constructing all
tableaux in a breadth-first manner and working down the search tree level-wise
from top to bottom, such a calculus was discussed in [Baumgartner and Briining
1997]. The explicit construction of all tableaux, however, suffers from an enormous
consumption of memory, since the number and the sizes of the generated proof
objects significantly grow during the proof process. Furthermore, the computational
effort for creating new tableaux increases with the depth of the search tree, since
the sizes of the tableaux increase. In contrast, for resolution procedures the number
of new proof objects (clauses) is generally considered the critical parameter. This
sufficiently demonstrates why an explicit tableau enumeration approach should not
be pursued in practice.

The customary and successful paradigm therefore is to explore a tableau search
tree in an implicit manner, using consecutively bounded depth-first iterative deep-
ening search procedures. In this approach, iteratively larger finite initial parts of
a search tree 7 are explored, by imposing so-called completeness bounds on the
structure of the permitted tableaux. Due to the construction process of tableaux
from the root to the leaves, many tableaux have identical or structurally identical

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2025

subparts. This suggests exploring finite initial segments in a depth-first manner, by
employing structure sharing techniques and using backtracking. More precisely, at
each time only one tableau is in memory, which is extended following the branches of
the search tree; backtracking occurs when a leaf node of the current initial segment
of the search tree has been reached. If no proof was found on one level, then the next
level of the iteration is started. A more elaborate description of this proof search
procedure will be given in Section 7. Even though according to this methodology
initial parts of the search tree are explored several times, no significant efficiency
is lost if the initial segments increase exponentially [Korf 1985]. The advantage is
that, due to the application of Prolog techniques, very high inference rates can be
achieved.

2.5. Completeness Bounds

In this section, different important completeness bounds will be introduced. For-
mally, a completeness bound can be viewed as a particular size function on tableaux.

2.7. DEFINITION (Completeness bound). A size bound is a total mapping s assign-
ing to any tableau T' a non-negative integer n called the s-size of T. A size bound
s is called a completeness bound for a (clausal) tableau calculus C if, for any finite
set S of formulae (clauses) and any n > 0, the search tree corresponding to C and
S contains only finitely many tableaux with s-size less or equal to n.

The finiteness condition qualifies completeness bounds as suitable for iterative
deepening search. Given a completeness bound s and an iterative deepening level
with size limit n, an implicit deduction enumeration procedure works as follows.
Whenever an inference step is applied to a tableau, it is checked whether the s-size
of the new tableau is < n, otherwise backtracking is performed.

2.5.1. Inference bound

The most natural completeness bound is the so-called inference bound which counts
the number of inference steps that are needed to construct a closed tableau. Using
the inference bound, the search tree is explored level-wise; that is, for size n, the
search tree is explored until depth < n. The search effort can be reduced by using
look-ahead information as follows. As soon as a clause is selected for attachment,
its length is taken into account for the current inference number, since obviously,
for every subgoal of the clause at least one inference step is necessary to solve it.
This enables us to detect the exceeding of the current size limit as early as possible.
For example, considering the search tree given in Figure 2, with inference limit 2,
one can avoid an expansion step with the first clause ~P(z) V =P(f(z)), since any
closed tableau with this clause as start clause will at least need 3 inference steps.
This method was first used in [Stickel 1988].

2026 REINHOLD LETZ AND GERNOT STENZ

2.5.2. Depth bound

A further simple completeness bound is the depth bound, which limits the length of
the branches of the tableaux considered in the current search level. In connection
tableaux, one can relax this bound so that it is only checked when non-unit clauses
are attached. This implements a kind of unit preference strategy. An experimental
comparison of the inference bound and the relaxed depth bound is contained in
[Letz et al. 1992].

Both of the above bounds have certain deficiencies in practice. Briefly, the infer-
ence bound is too optimistic, since it implicitly assumes that subgoals which are not
yet processed may be solved with just one inference step. The weakness of the depth
bound, on the other hand, is that it is too coarse in the sense that the number of
tableaux in a search tree with depth < n+1 is usually much larger than the number
of tableaux with depth < n. In fact, in the worst case, the increase function is dou-
bly exponential whereas, in the case of the inference bound, the increase function
is exponential at most. Furthermore, both bounds favour tableaux of completely
different structures. Using the inference bound, trees containing few long branches
are preferred, whereas the depth bound prefers symmetrically structured trees.

2.5.3. A divide-and-conquer optimization of the inference bound

In [Harrison 1996], the following method was applied for avoiding some of the
deficiencies of the inference bound. In order to comprehend the essence of the
method, assume N; and N> to be two subgoals (among others) in a tableau and
let the number of remaining inferences be k. Now it is clear that one of the two
subgoals must have a proof of < k/2 inferences in order to meet the size limit. This
suggests the following two-step algorithm. First, select the subgoal N; and attempt
to solve it with inference limit k/2; if this succeeds, solve the rest of the tableau
with whatever is left over from k. If this has been done for all solutions of the
subgoal N;, repeat the entire process for N». The advantage of this method is that
the exploration of N7 and N, to the full limit k is often avoided. Its disadvantage
is that pairs of solutions of the subgoals with size < k/2 will be found twice, which
increases the search space. In order to keep this method from failing in the recursive
case, methods of failure caching as presented in Section 4.3 are needed. In practice,
this method performs better if smaller limits like k/3 or k/4 are used instead of
k/2, although those do not guarantee that all proofs on the respective iterative
deepening level can be found. A possible explanation for this improved behavior is
that the latter methods tend to prefer short or unit clauses which is a generally
successful strategy in automated deduction (see also Section 2.6.2 where a similar
effect may be achieved with a method based on a different idea).

2.5.4. Clause dependent depth bounds

Other approaches aim at improving the depth bound. The depth bound is typically
implemented as follows. For a given tableau depth limit, say k, every node in the
tableau is labelled with the value k — d where d is the distance from the root node.
If this value of a node is 0, then no tableau extension is permitted at this node.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2027

Accordingly, one may call this value of a node its resource. This approach permits
a straightforward generalization of the depth bound. Instead of giving the open
successors Ni,..., Ny, of a tableau node N with resource i the resource j = — 1,
the resource j of each of Ni,..., Ny, is the value of a function r of two arguments,
the resource 7 of N and the number m of new subgoals in the attached clause.
We call such bounds clause dependent depth bounds. With clause dependent depth
bounds a smoother increase of the iterative deepening levels can be obtained. Two
such clause dependent depth bounds have been used in practice, one defined by
r(i,m) = i — m (this bound is available in the system SETHEO since version V.3
[Goller, Letz, Mayr and Schumann 1994]) and the other by r(i,m) = (i — 1)/m
(this bound was called sym in [Harrison 1996]).

2.5.5. (Inference) weighted depth bounds

Although a higher flexibility can be obtained with clause dependent depth bounds,
all these bounds are pure depth bounds in some sense, since the resource j of a node
is determined at the time the node is attached to the tableau. In order to increase
the flexibility and to permit an integration of features of the inference bound, the so-
called weighted depth bounds have been developed. The main idea of the weighted
depth bounds is to use a bound such as the clause dependent depth bound as
a basis, but to take the inferences into account when eventually allocating the
resource to a subgoal. In detail, this is controlled by three parameterized functions
wy, wy, ws as follows. When entering a clause with m subgoals from a node with
resource 1, first, the maximally available resource j for the new subgoals is computed
according to a clause dependent depth bound, i.e., j = w; (¢,7m). Then, the value j
is divided into two parts, a guaranteed part j, = wo(j,m) < j and an additive
part jo = j — jo. Whenever a subgoal is selected, the additive part is modified
depending on the inferences Ai performed since the clause was attached to the
tableau,? i.e., j. = w3(js, Ai). The resource finally allocated for a selected subgoal
then is j, + ji.

Depending on the parameter choices for the functions w;, ws, ws, the respec-
tive weighted depth bound can simulate the inference bound (w;(i,m) = i — m,
wa(j,m) = 0, ws(ja, Ai) = j, — Ai) or the (clause dependent) depth bound(s) or
any combination of them.

A parameter selection which represents a simple new completeness bound com-
bining inference and depth bound is, for example, w;(i,m) = i — 1, wa(j,m) =
Jj—(m—1), w3(ja, At) = jo/(1+ Ai). For certain formula classes, this bound turned
out to be much more successful than each of the other bounds [Moser, Ibens, Letz,
Steinbach, Goller, Schumann and Mayr 1997]. One reason for the success of this
strategy is that it also performs a unit preference strategy.

2We assume that the look-ahead optimization is used, according to which reduction steps and
extension steps into unit clauses do not increase the current inference value. This implies that
Ai = 0 if no extension steps into non-unit clauses have been performed on subgoals of the current
clause.

2028 REINHOLD LETZ AND GERNOT STENZ

2.6. Subgoal Processing

There is a source of indeterminism in the clausal tableau calculi presented so far that
can be removed without any harm. This indeterminism concerns the selection of the
next subgoal at which an expansion, extension, or closure step is to be performed.

2.8. DEFINITION (Subgoal selection function). A (subgoal) selection function ¢ is a
mapping assigning an open branch with subgoal N to every open tableau T'. Let ¢
be a subgoal selection function and S = T3,...,T, a sequence of tableaux. If each
tableau T;1; in S can be obtained from T; by performing an inference step on the
subgoal ¢(T;), then we say that S and T, are constructed according to ¢.

Most complete refinements and extensions of clausal tableau calculi developed
to date are independent of the subgoal selection, i.e., the completeness holds for
any subgoal selection function (for exceptions see Section 6.2 and Section 7 in
[Letz et al. 1994]). If a calculus has this property, then it is possible to choose one
subgoal selection function ¢ in advance and ignore all tableaux in the search tree
that are not constructed according to ¢. This way the search effort can be reduced
significantly. As an illustration of this method of search pruning, consider the search
tree displayed in Figure 2. For this simple tree, one can only distinguish two subgoal
selection functions ¢ and ¢2. ¢, selects the left subgoal and ¢, the right subgoal
in the start clause. When deciding for ¢, the three leftmost lower boxes will vanish
from the search tree. In case ¢; is used, only two boxes will be pruned away.

For the clausal tableau calculi presented up to this point, even the following
stronger independence property holds.

2.9. PROPOSITION (Strong independence of subgoal selection). Given any closed
(path) (connection) tableau T for a set of clauses S constructed with n inference
steps, then for any subgoal selection function ¢, there ezists a sequence Ty,..., T,
of (path) (connection) tableauz constructed according to ¢ such that T, is closed
and T is an instance of Ty, i.e. T = T,,0 for some substitution o.

PROOF. See [Letz 1999). a

In case a calculus is strongly independent of the subgoal selection, not only com-
pleteness is preserved, but minimal proof lengths as well. Furthermore, if a com-
pleteness bound of the sort described above is used, then the iterative deepening
level on which the first proof is found is always the same, independent of the subgoal
selection. Note that the strong independence of the subgoal selection (and hence
minimal proof lengths) will be lost for certain extensions of the clausal tableau
calculus such as folding up [Letz et al. 1994] and the local closure rule which is
discussed below.

One particular useful form of choosing subgoals is depth-first selection, i.e., one
always selects the subgoal of an open branch of maximal length in the tableau.
Depth-first left-most/right-most selection always chooses the subgoal on the left-
most/right-most open branch (which automatically has maximal depth). Depth-

MoDEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2029

first left-most selection is the built-in subgoal selection strategy of Prolog. Depth-
first selection has a number of advantages, the most important being that the search
is kept relatively local. Furthermore, very efficient implementations are possible.

2.6.1. Subgoal reordering

The order of subgoal selection has influences on the size of the search space, as
shown by the search tree above. This is because subgoals normally share variables
and thus the solution substitutions of one subgoal have an influence on the solution
substitutions of the other subgoals.

A general least commitment paradigm is to prefer subgoals that produce fewer
solutions. In order to identify a non-closable connection tableau as early as possi-
ble, the solutions of a subgoal should be exhausted as early as possible. Therefore,
subgoals for which probably only few solutions exist should be selected earlier than
subgoals for which many solutions exist. This results in the fewest-solutions prin-
ciple for subgoal selection.

Depth-first selection means that all subgoal alternatives stem from one clause of
the input set. Therefore, the selection order of the literals in a clause can be deter-
mined statically, i.e., once and for all before starting the proof search, as in [Letz
et al. 1992]. But subgoal selection can also be performed dynamically, whenever
the literals of the clause are handled in a tableau. The static version is cheaper (in
terms of performed comparisons), but often an optimal subgoal selection cannot
be determined statically, as can be seen, for example, when considering the tran-
sitivity clause P(z,2) V = P(z,y) V =P(y, 2). Statically, none of the literals can be
preferred. Dynamically, however, when performing an extension step entering the
transitivity clause from a subgoal —P(a, z), the first subgoal ~P(z,y) is instanti-
ated to =P(a,y). Since it contains only one variable now, it should be preferred
according to the fewest-solutions principle. Entering the transitivity clause from a
subgoal —P(z,a) leads to preference of the second subgoal =P(y, a).

2.6.2. Subgoal alternation
When a subgoal in a tableau has been selected for solution, a number of comple-
mentary unification partners are available, viz. the connected path literals and the
connected literals in the input clauses. Together they form the so-called choice point
of the subgoal. One common principle of standard backtracking search procedures in
model elimination (and in Prolog) is that, whenever a subgoal has been selected, its
choice point must be completely finished, i.e., when retracting an alternative in the
choice point of a subgoal, one has to stick to the subgoal and try another alternative
in its choice point. This standard methodology has an interesting search-theoretic
weakness.

This can be shown by the following generic example, variants of which often
occur in practice. Given the subgoals - P(z,y) and ~Q(z,y) in a tableau, assume
the following clauses to be in the input.

(1) P(a,a),
(2) P(z,y)V-P'(z,2)V-P'(y,2),

2030 REINHOLD LETZ AND GERNOT STENZ

ﬁp(x,/ \—.Q()IC, Y)

P(X,Y) -P’ ({, Z) =P'(Y, Z) n? failures

P'(a;,a),1<i<n P'(aj,a),1<j<n

Figure 3: Effort in case of standard subgoal processing.

/\

-P(X,Y) -Q(X,Y)
o o
P(X,)Y) ﬁP'(IX,Z) -~P'(Y,Z) Q(a;,b),1<i<n
n? failures

Figure 4: Effort when switching to another subgoal.

(3) Pl(aiaa)y 1 < i <n,
(4) Q(aiyb)y 1 S i S n.

Suppose further we have decided to select the first subgoal and perform depth-first
subgoal selection. The critical point, say at time ¢, is after unit clause (1) in the
choice point was tried and no compatible solution instance for the other subgoal
was found. Now we are forced to enter clause (2). Obviously, there are n? solution
substitutions (unifications) for solving clause (2) (the product of the solutions of its
subgoals). For each of those solutions, we have to perform n unifications with the Q-
subgoal, which all fail. Including the unifications spent in clause (2), this amounts to
a total effort of 1+n+n2+n3 unifications (see Figure 3). Observe now what would
happen when at time ¢t we would not have entered clause (2), but would switch to
the @-subgoal instead. Then, for each of the n solution substitutions @(a;,b), one
would jump to the P-subgoal, enter clause (2) and perform just . failing unifications
for its first subgoal. This sums up to a total of just n+n(1+n) = 2n+n? unifications
(see Figure 4).

It is apparent that this phenomenon is related to the fewest-solutions principle.
Clause (2) generates more solutions for the subgoal ~P(X,Y) than the clauses in
the choice point of the subgoal -Q(X,Y’). This shows that taking the remaining
alternatives of all subgoals into account provides a choice which can better sat-
isfy the fewest-solution principle. As a general principle, subgoal alternation always
switches to the subgoal the current connected clause of which is likely to produce

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2031

the fewest solutions.

One might argue that with a different subgoal selection, selecting the @Q-subgoal
first could also avoid the cubic effort. But it is apparent that the example could
be extended so that the Q-subgoal would additionally have a longer clause as an
alternative, so that the total number of its solutions would be even larger than that
of the P-subgoal. In this case, with subgoal alternation one could jump back to
the P-subgoal and try clause (2) next, in contrast to standard subgoal selection.
Another possibility of jumping to the Q-subgoal after having entered clause (2)
would be free subgoal selection. In fact, subgoal alternation under depth-first sub-
goal selection comes closer to standard free subgoal selection, but both methods
are not identical.

The question is, when it is worthwhile to stop the processing of a choice point
and switch to another subgoal? As a matter of fact, it cannot be determined in
advance, how many solutions a clause in the choice point of a subgoal produces for
that subgoal. A useful criterion, however, is the shortest-clause principle, since, in
the worst case, the number of subgoal solutions coming from a clause is the product
of the numbers of solutions of its subgoals.

In summary, subgoal alternation works as follows. The standard subgoal selection
and clause selection phases are combined and result in a single selection phase that
is performed before each derivation step. The selection yields the subgoal for which
the most suitable unification partner exists wrt. the number of solutions probably
produced. This is done by comparing the unification partners of all subgoals with
each other using, for instance, the shortest-clause principle. If more than one unifi-
cation partner is given the mark of ‘best choice’, their corresponding subgoals have
to be compared due to the principles for standard subgoal selection, namely the
first-fail principle and the fewest-solutions principle.

In order to compare the way subgoal alternation (using the shortest-clause prin-
ciple) works to the standard non-alternating variant, consider two subgoals A and
B with clauses of lengths 1,3,5 and 2,4,6 in their choice points, respectively. Table 1
illustrates the order in which clauses are tried.

Subgoal alternation has a number of interesting effects when combined with other
methods in model elimination. First note that the method leads to the preference of
short clauses. A particularly beneficial effect of preferring short clauses, especially
the preference of unit clauses, is the early instantiation of variables. Unit clauses are
usually more instantiated than longer clauses, because they represent the ”facts”
of the input problem, whereas longer clauses in general represent the axioms of the
underlying theory. Since normally variables are shared between several subgoals, the
solution of a subgoal by a unit clause usually leads to instantiating variables in other
subgoals. These instantiations reduce the number of solutions of the other subgoals
and thus reduce the search space to be explored when selecting them. Advantage
is also taken from subgoal alternation when combined with local failure caching
considered in Section 4.3. Failure caching can only exploit information from closed

3 Also, the number of variables in the calling subgoal and in the head literal of a clause matter
for the number of solutions produced.

2032 REINHOLD LETZ AND GERNOT STENZ

standard backtracking subgoal alternation

Al B2 Al B2
Al B4 Al B4
Al B6 Al B6
A3 B2 U B2 A3
A3 B4 B2 A5
A3 B6 W A3 B4
A5 B2 A3 B6
A5 B4 W B4 A5
A5 B6 W A5 B6

Table 1: Order of tried clauses for subgoals A and B with clauses of lengths 1,3,5
and 2,4,6 in their choice points, respectively. U indicates subgoal alternations.

sub-tableaux, thus a large number of small subproofs provides more information
for caching than a small number of large sub-tableaux that cannot be closed. Since
subgoal alternation prefers short clauses and hence small subproofs, the local failure
caching mechanism is supported.

Subgoal alternation leads to the simultaneous processing of several choice points.
This provides the possibility of computing look-ahead information concerning the
minimal number of inferences still needed for closing a tableau. A simple estimate
of this inference value is the number of subgoals plus the number of all subgoals in
the shortest alternative of each subgoal. In general, when using standard subgoal
selection, every choice point with literal L except the current one contains connected
path literals and connected unit clauses, that is, possibly L can be solved in one
inference step. Using subgoal alternation, the reduction steps and the extension
steps with unit clauses have already been tried at several choice points, so that
only the unification partners in non-unit clauses are left in the choice points of
several subgoals. Thus more information about the required inference resources can
be obtained than in the standard procedure. This look-ahead information can be
used for search pruning, whenever the number of inferences has an influence on the
search bound.*

However, under certain circumstances alternating between subgoals may be dis-
advantageous. If a subgoal cannot be solved at all, switching to another subgoal
may be worse than sticking to the current choice point, since the latter may lead to
an earlier retraction of the whole clause. This is important for ground subgoals in
particular, because they have at most one solution substitution in the Horn case.
Since ground subgoals do not contain free variables, they normally cannot profit
from early instantiations achieved by subgoal alternation, i.e., switching to brother

4This technique is also used by the SETHEO system [Moser et al. 1997].

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2033

subgoals and instantiating their free variables cannot lead to instantiations within a
ground subgoal. Therefore, when processing a ground subgoal, the fewest-solutions
principle for subgoal selection becomes more important than the shortest-clause
principle for subgoal alternation. For this reason, subgoal alternation should not be
performed when the current subgoal is ground.

2.7. Connection Tableauz and Related Calculi

Due to the fact that tableau calculi work by building up tree structures whereas
other calculi derive new formulae from old ones, the close relation of tableaux with
other proof systems is not immediately evident. There exist similarities of tableau
proofs to deductions in other calculi. In order to clarify the interdependencies, it
is helpful to reformulate the process of tableau construction in terms of formula
generation procedures. There are two natural formula interpretations of tableaux
which we shall mention and which both have their merits.

2.10. DEFINITION. The branch formula of a formula tree T is the disjunction of
the conjunctions of the formulae on the branches of T'.

Another finer view is preserving the underlying tree structure of the formula tree.

2.11. DEFINITION (Formula of a formula tree (inductive)).

1. The formula of a one-node formula tree labelled with the formula F' is simply
F.

2. The formula of a complex formula tree with root N (with label F) and im-
mediate formula subtrees T3,...,T,, in this order, is F A (Fy V -+~ V Fy) (or
simply Fj V---V F, if N is unlabelled) where F; is the formula of T}, for every
1<i<n.

Evidently, the branch formula and the formula of a formula tree are equivalent.
Futhermore, it is clear that the following proposition holds, from which, as a corol-
lary, also follows the soundness of the method of clausal tableaux.

2.12. PROPOSITION. If F is the (branch) formula of a clausal tableau for a set of
clauses S, then F is a logical consequence of S.

PrOOF. Trivial. (|

With the formula notation of tableaux, one can identify a close correspondence of
tableau deductions to calculi of the generative type. This way, the relation between
tableaux and Gentzen’s sequent system was shown in [Smullyan 1968] using so-
called block tableauz. We are interested in recognizing similarities to calculi from
the field of automated deduction. For this purpose, it is helpful to only consider the
open parts of tableaux, which we call goal trees.

2034 REINHOLD LETZ AND GERNOT STENZ

2.13. DEFINITION (Goal tree). The goal tree of a tableau T is the formula tree
obtained from T by cutting off all closed branches.

The goal tree of a tableau contains only the open branches of a tableau. Obviously,
for the continuation of the refutation process, all other parts of the tableau may be
disregarded without any harm.

2.14. DEFINITION (Goal formula).
1. The goal formula of any closed tableau is the falsum L.

2. The goal formula of any open tableau is the formula of the goal tree of the
tableau.

Using the goal formula interpretation, the tableau construction can be viewed as
a linear deduction process in which a new goal formula is always deduced from the
previous one until eventually the falsum is derived. In Example 2.15, we give a goal
formula deduction that corresponds to the construction of the tableau in Figure 1,
under a branch selection function ¢ that always selects the right-most branch.

2.15. EXAMPLE (Goal formula deduction). The set of clauses S = {R(z)VR(f(z)),
=R(z) V-~R(f(f(z)))} has the following goal formula refutation.

~R(z) vV =R(f(f()))

=R(z) v (=R(f(f(z))) A R(f(f(F(2)))))

=R(z) v (~R(f(f(2))) A R(f(f(f(2)))) A ~R(f(x)))

ﬁggzg V (~R(f(f(2))) A R(f(f(£(2)))) A ~R(f(=)) A R(f(f(2))))
=R(f(z)) A R(f(f(=)))

~R(f(z)) A R(f(f(x))) A =R(z)

IR(f (2)) A B(£(f(2))) A —R(z) A R(f(=))

2.16. PROPOSITION. The goal formula of any clausal tableau T is logically equiv-
alent to the formula of T.

Proor. Trivial. O

2.7.1. Model elimination chains

Using the goal tree or goal formula notation, one can easily identify a close simi-
larity of connection tableaux with the model elimination calculus as presented in
[Loveland 1978}, which we will discuss in some more detail. As already mentioned,
model elimination was originally introduced as a tree-based procedure with the full
generality of subgoal selection in [Loveland 1968], although the deductive object of
a tableau is not explicitly used in this paper. As Don Loveland has pointed out, the
linearized version of model elimination presented in [Loveland 1969, Loveland 1978)
was the result of an adaptation to the resolution form. Here, we treat a subsystem of
model elimination without factoring and lemmata, called weak model elimination in

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2035

[Loveland 1978], which is still refutation-complete. The fact that weak model elimi-
nation is indeed a specialized subsystem of the connection tableau calculus becomes
apparent when considering the goal formula deductions of connection tableaux. The
weak model elimination calculus can be considered as the special case of the con-
nection tableau calculus where the selection of open branches is performed in a
depth-first right-most or left-most manner, i.e., always the right-most (left-most)
open branch has to be selected. Let us choose the right-most variant for now. Due
to this restriction of the subgoal selection, a one-dimensional “chain” representa-
tion of goal formulae is possible in which no logical operators are necessary. The
transformation from goal formulae with a depth-first right-most selection function
to model elimination chains works as follows. To any goal formula generated with
a depth-first right-most selection function, apply the following operation: replace
every conjunction Ly A -+ A L, A F with [L,---L,]F and delete all disjunction
symbols.

In a model elimination chain, the occurrences of bracketed literals denote the
non-leaf nodes and the occurrences of unbracketed literals denote the subgoals of
the goal tree of the tableau. For every subgoal N corresponding to an occurrence of
an unbracketed literal L, the bracketed literal occurrences to the left of L encode
the ancestor nodes of N. The model elimination proof corresponding to the goal
formula deduction given in Example 2.15 is depicted in Example 2.17.

2.17. EXAMPLE (Model elimination chain deduction). The set {R(z) V R(f(z)),
-R(z) V=R(f(f(z)))} has the following model elimination chain refutation.

-R(z) ~R(f(f(z)))

~R(z) [~R(f(f(z)))] R(f(f(f(2))))

~R(z) [~R(f(f())) R(f(£(f(2))))] ~R(f(x))

ﬂggzg [~R(f(£(z))) R(f(f(f(=)))) ~R(f(=))] R(f(f(2)))
[~R(f(z))] R(f(f(=)))

[~R(f()) R(f(f(2)))] ~R(z)

[;R(f(z)) R(f(f(=))) ~R(z) | R(f(=))

It is evident that weak model elimination is a refinement of the connection tableau
calculus, in which a fixed depth-first selection function is used. Viewing chain model
elimination as a tableau refinement has various proof-theoretic advantages concern-
ing generality and the possibility of defining extensions and refinements of the basic
calculus. Also the soundness and completeness proofs of chain model elimination
are immediate consequences of the soundness and completeness proofs of connec-
tion tableaux, which are very short and simple if compared with the rather involved
proofs in [Loveland 1978). Subsequently, we will adopt the original and more general
view of model elimination as intended by Don Loveland [Loveland 1968] and use
the terms connection tableaux and model elimination synonymously.

It is straightforward to recognize that SLD-resolution, although traditionally in-
troduced as a resolution refinement, can also be viewed as a restricted form of model

2036 REINHOLD LETZ AND GERNOT STENZ

elimination where the reduction steps are omitted. If the underlying formula is a
Horn formula, i.e., contains Horn clauses only, then it is obvious that this restriction
on model elimination preserves completeness.?

2.7.2. The connection method

Another framework in automated deduction which is related with tableaux is the
connection method [Andrews 1981, Bibel 1987]. We briefly mention the fundamen-
tal concepts of the connection method here, since they will be used for a search
pruning technique presented in Section 4.1.

2.18. DEFINITION (Path, connection, mating, spanning property). Given a set of
clauses S = {c1,...,¢n}, a path through S is a set of n literal occurrences in S,
exactly one from each clause in S. A connection in S is a two-element subset of a
path through S such that the corresponding literals are complementary. Any set of
connections in S is called a mating in S. A mating M is said to be spanning for S
if every path through S is a superset of a connection in M.

A set of ground clauses S is unsatisfiable if and only if there is a spanning mating
for S. The most natural method for finding and identifying a spanning mating
as such is to use a tree-oriented path checking procedure which decomposes the
formula, much the same as in the tableau framework, but guided by connections.
The majority of those connection calculi in [Bibel 1987] can therefore be considered
as connection tableau calculi, using the weaker path connectedness condition. Thus,
every closed (path) connection tableau for a set S determines a spanning mating
for S. In the first-order case, the notions of multiplicities and unification come
into play, which we will not treat here. For a more detailed comparison, see [Letz
et al. 1994, Letz 1998b).

3. Further Structural Refinements of Clausal Tableaux

The pure calculus of connection tableaux is only moderately successful in auto-
mated deduction. This is because the corresponding search trees are still full of
redundancies. In general, there are different methodologies for reducing the search
effort of tableau search procedures. In this section, we consider methods which at-
tempt to restrict the tableau calculus, that is, disallow certain inference steps if
they produce tableaux of a certain structure—note that the connection condition is
such a structural restriction on general clausal tableaux. The effect on the tableau
search tree is that the respective nodes together with the dominated subtrees can
be ignored so that the branching rate of the tableau search tree decreases. These
structural methods of redundancy elimination are local pruning techniques in the
sense that they can be performed by looking at single tableaux only.

5When starting with an all-negative clause, reduction steps are not possible for syntactic rea-
sons.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2037

3.1. Regularity

A fundamental structural refinement of tableaux is the so-called regularity condi-
tion.

3.1. DEFINITION (Regularity). A clausal tableau is regular if on no branch a literal
occurs more than once.

The term ”regular” has been used to emphasize the analogy to the definition
of reqular resolution [Tseitin 1970]. Imposing the regularity restriction has some
important consequences. First, for general clausal tableaux, every closed tableau
of minimal size is guaranteed to be regular. Therefore, regularity preserves mini-
mal proof lengths. Furthermore, using regularity the tableau search space of any
ground formula becomes finite. While the latter condition also holds for connec-
tion tableaux, minimal closed connection tableaux may not be regular. In [Letz
et al. 1994] it is shown that regular connection tableaux cannot even polynomi-
ally simulate connection tableaux. Nevertheless, a wealth of experimental results
clearly shows that this theoretical disadvantage is more than compensated for by the
strong search pruning effect of regularity [Letz et al. 1992], so that this refinement
is indispensable for any model elimination proof procedure.

3.2. Tautology Elimination

Normally, it is a good strategy to eliminate certain clauses from the input set which
can be shown to be redundant for finding a refutation. Tautological clauses are of
such a sort.® In the ground case, tautologies may be identified once and for ever
in a preprocessing phase and can be eliminated before starting the actual proof
search. In the first-order case, however, it may happen that tautologies are gener-
ated dynamically. Let us demonstrate this phenomenon with the example of the
clause -~P(z,y) V -~P(y, z) V P(z,2) expressing the transitivity of a relation. Sup-
pose that during the construction of a tableau this clause is used in an extension
step (for simplicity renaming is neglected). Assume further that after some subse-
quent inference steps the variables y and z are instantiated to the same term t.
Then a tautological instance -P(z,t) V =P(t,t)V P(z,t) of the transitivity formula
has been generated. Since no tautological clause is relevant in a set of formulae,
connection tableaux with tautological tableau clauses need not be considered when
searching for a refutation. Therefore the respective tableau and any extension of it
can be disregarded.

Please note that the conditions of tautology-freeness and regularity are partially
overlapping. More specifically, the non-tautology condition on the one hand covers
all occurrences of identical predecessor nodes, but not the more remote ancestors.
The regularity condition on the other hand captures all occurrences of tautological

80f course, tautologies may facilitate the construction of smaller tableau proofs, since they can
be used to simulate the cut rule. Yet, an uncontrolled use of cuts is not desirable at all.

2038 REINHOLD LETZ AND GERNOT STENZ

clauses for backward reasoning with Horn clauses (i.e. with negative start clauses
only), but not for non-Horn clauses.

3.3. Tableau Clause Subsumption

An essential pruning method in resolution theorem proving is subsumption dele-
tion, which during the proof process deletes any clause that is subsumed by an-
other clause, and this way eliminates a lot of redundancy. Although no new clauses
are generated in the tableau approach, a restricted variant of clause subsumption
reduction can be used in the tableau framework, too. First, we briefly recall the
definition of subsumption between clauses.

3.2. DEFINITION (Subsumption for clauses). Given two clauses ¢; and cp, we say
that ¢, subsumes c, if there is a variable substitution o such that the set of literals
contained in c¢;o is a subset of the set of literals contained in c.

Similar to the dynamic generation of tautologies, it may happen, that a clause
which has been attached in a tableau step during the tableau construction process
is instantiated and then subsumed by another clause from the input set. As an
example, suppose the transitivity clause from above and a unit clause P(a,b) are
contained in the input set. Now, if the transitivity clause is used in a tableau
and if after some inference steps the variables £ and z are instantiated to a and
b, respectively, then the resulting tableau clause —=P(a,y) V ~P(y,b) V P(a,b) is
subsumed by P(a,b). Obviously, for any closed tableau using the former tableau
clause a closed tableau exists which uses the latter clause instead.

Again there is the possibility of a pruning overlap with the regularity and the
non-tautology conditions. Note that, strictly speaking, avoiding tableau clause sub-
sumption is not a pure tableau structure restriction, since a case of subsumption
cannot be defined by merely looking at the tableau. Additionally, it is necessary to
take the respective input set into account.

8.4. Strong Connectedness

When employing an efficient transformation from the general first-order format to
clausal form, new predicates are sometimes introduced which are used to abbreviate
certain formulae [Eder 1984, Plaisted and Greenbaum 1986, Boy de la Tour 1990].
Assume, for instance, we have to abbreviate a conjunction of literals a A b with a
new predicate d by introducing a biconditional d <+ a Ab. This rewrites to the three
clauses ~aV~bV d, aV ~d, and bV ~d. Interestingly, every resolvent between the
three clauses is a tautology. Applied to the tableau construction, this means that
whenever one of these clauses is immediately below another one, then a hidden
form of a tautology has been generated as shown in Figure 5. (This example also
illustrates that the effect of the cut rule can be simulated by suitable definitions.)

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2039

T

~a ~b d

N

b ~d

Figure 5: Hidden tautologies in tableaux.

Please note that certain cases of such hidden tautologies may be avoided. For
this purpose the notion of connectedness was strengthened to strong connectedness
in [Letz 1993].

3.3. DEFINITION (Strong connectedness). Two clauses ¢; and c, are strongly con-
nected if there is a substitution ¢ such that c¢;o contains exactly one literal whose
complement occurs in ¢z, i.e. ¢; and ca can be used as the parent clauses of a
non-tautological resolvent.

In Section 6.1, it will be proven that, for all pairs of adjacent tableau clauses,
strong connectedness may be demanded without losing completeness. However, it
is essential that the two clauses are adjacent, i.e. one must be located immediately
below the other. For more distant pairs of tableau clauses one dominated by the
other, the condition that they be strongly connected is not compatible with the
condition of regularity. An example for this is given in Figure 6. This figure shows
the only closed strongly connected regular tableau with top clause {—p, ~q}. Note
that the top clause and the clause {p,q} have only tautological resolvents. This
cannot be avoided even when additional inference rules like factorization or folding
up (see Section 5) are available.

/\
VAVERVAN
/\ /

Figure 6: A strongly connected tableau for {{p,q}, {p, ¢}, {-p-¢}, {-p.—¢}}.

3.5. Use of Relevance Information

By using relevance information, the set of possible start clauses can be minimized.

2040 REINHOLD LETZ AND GERNOT STENZ

3.4. DEFINITION (Essentiality, relevance, minimal unsatisfiability). A formula F
is called essential in a set S of formulae if S is unsatisfiable and S\ {F'} is satisfi-
able. A formula F is named relevant in S if F is essential in some subset of S. An
unsatisfiable set of formulae S is said to be minimally unsatisfiable if each formula
in S is essential in S.

As will be shown in Section 6, the connection tableau calculus is complete in
the strong sense that, for every relevant clause in a set S, there exists a closed
connection tableau for S with this clause as the start clause. Since in any unsatisfi-
able set of clauses, some negative clause is relevant, it is sufficient to consider only
negative clauses as start clauses. The application of this default pruning method
achieves a significant reduction of the search space. In many cases, one has even
more information concerning the relevance of certain clauses. Normally, a satisfi-
able subset of the input is well-known to the user, namely, the clauses specifying
the theory axioms and the hypotheses. Such relevance information is also provided
in the TPTP library [Sutcliffe, Suttner and Yemenis 1994]. A goal-directed system
can enormously profit from the relevance information by considering only those
clauses as start clauses that stem from the conjecture. As an example, consider an
axiomatization of set theory containing the basic axiom that the empty set contains
no set, which is normally expressed as a negative unit clause. Evidently, it is not
very reasonable to start a refutation with this clause.

It is important to note, however, that when relevance information is being em-
ployed, then all conjecture clauses have to be tried as start clauses and not only
the all-negative ones. Relevance information is normally more restrictive than the
default method except when all negative clauses are stemming from the conjecture,
in which case obviously the default mode is more restrictive.

4. Global Pruning Methods in Model Elimination
4.1. Matings Pruning

As already mentioned in Section 2.7.2, a mating, i.e. a set of connections, can
be associated with any (path) connection tableau. However, this mapping is not
injective in general. So one and the same mating may be associated with different
tableaux. This means that the matings concept provides a more abstract view of
the search space and enables us to group tableaux into equivalence classes. Under
certain circumstances, it is not necessary to construct all tableauz in such a class
but only one representative. In order to illustrate this, let us consider the set of
propositional clauses

{"Pl V-Py,mPVP,P,V-P,PV P2}

As shown in Figure 7, the set has 4 closed regular connection tableaux with the
all-negative start clause ~P; V ~P,. If, however, the involved sets of connections
are inspected, it turns out that the tableaux all have the same mating consisting of

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2041

6 connections. The redundancy contained in the tableau framework is that certain
tableaux are permutations of each other corresponding to different possible ways
of traversing a set of connections. Obviously, only one of the tableaux in such an
equivalence class has to be considered.

/\/\

-P, -P; -P =P,
P, P -Py P P, -P P P
PP PP P P PP P
T T
-Py -P =P -P
% A% A% 4
P, -P, P P P, PP P

Figure 7: Four closed connection tableaux for the same spanning mating.

The question is, how exactly this redundancy can be avoided. A general line of
development would be to store all matings that have been considered during the
tableau search procedure and to ignore all tableaux which encode a mating which
was already generated before. This approach would require an enormous amount
of space. Based on preliminary work in [Letz 1993], a method was developed in
[Letz 1998b] which can do with very little space and avoid the form of duplication
shown in Figure 7. To comprehend the method, note that, in the example above,
the source of the redundancy is that a certain connection can be used both in an
extension step and in a reduction step. This causes the combinatorial explosion.
The idea is now to block certain reduction steps by using an ordering < on the
occurrences of literals in the input set which has to be respected during the tableau
construction, as follows. Assume, we want to perform a reduction step from a node
N to an ancestor node N'. Let Ni,..., N, be the node family below N'. The nodes
Ni,...,N, were attached by an extension step ”into” a node complementary to
N', say N;. Now we do not permit the reduction step from N to N' if N; < N
where the ordering < is inherited from the literal occurrences in the input set to
the tableau nodes. As can easily be verified, for any total ordering, in the example
above, only one closed tableau can be constructed with this proviso. As shown in
[Letz 1998b], using this method a super-exponential reduction of the search space
can be achieved with almost no overhead.

On the other hand, there may be problems when combining this method with
other search pruning techniques.

2042 REINHOLD LETZ AND GERNOT STENZ

4.1.1. Matings pruning and strong connectedness

For instance, the method is not compatible with the condition of strong connect-
edness presented in Section 3.4. As a counterexample, consider the set of the four
clauses given in Example 4.1.

4.1. ExampPLE. {PV Q(a), PV -Q(a), =PV Q(a), =P V =Q(z)}.

/\\ﬂQ(m)
AN\ AN

/ Q(a) Qéa) P [-P]
—Q(a)

Figure 8: Deduction process for Example 4.1.

If we take the fourth clause, which is relevant in the set, as top clause, enter the
first clause, then the second one by extension, and finally, perform a reduction step,
then the closed subtableau on the left-hand side encodes the mating {C}, C2,Cs}.
Now, any extension step at the subgoal labelled with =Q(z) on the right-hand side
immediately violates the strong connectedness condition. Therefore, backtracking is
required up to the state in which only the top clause remains. Afterwards, the second
clause must be entered, followed by an extension step into the first one. But now
the mating pruning forbids a reduction step at the subgoal labelled with P, since
it would produce a closed subtableau encoding the same mating {Cs,C2,C;} as
before. Since extension steps are impossible because of the regularity condition, the
deduction process would fail and incorrectly report that the clause set is satisfiable.

4.2. Tableau Subsumption

A much more powerful application of the idea of subsumption between input clauses
and tableau clauses consists in generalizing subsumption between clauses to sub-
sumption between entire tableaux. For a powerful concept of subsumption between
formula trees, the following notion of formula tree contractions proves helpful.

4.2. DEFINITION ((Formula) tree contraction). A (formula) tree T is called a con-
traction of a (formula) tree 7" if T can be obtained from T by attaching n (formula)
trees to n non-leaf nodes of T', for some n > 0.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2043

AA\%%

Figure 9: Illustration of the notion of tree contractions.

In Figure 9, the tree on the left is a contraction of itself, of the second and the
fourth tree but not a contraction of the third one. Furthermore, the third tree is a
contraction of the fourth one, which exhausts all contraction relations among these
four trees. Now subsumption can be defined easily by building on the instance
relation between formula trees.

4.3. DEFINITION (Formula tree subsumption). A formula tree T subsumes a for-
mula tree T if some formula tree contraction of T” is an instance of T'.

The subsumption relation can be extended considerably by considering the
branches as sets, or even more by employing the positive refinement technique
discussed in [Baumgartner and Briining 1997).

Since the exploitation of subsumption between entire tableaux has not enough
potential for reducing the search space, we favour the following form of subsumption
deletion.

4.4. DEFINITION (Subsumption deletion). For any pair of different nodes A/ and
N' in a tableau search tree T, if the goal tree of the tableau at A subsumes the
goal tree of the tableau at A, then the whole subtree of the search tree with root
N is deleted from 7.

With subsumption deletion, a form of global redundancy elimination is achieved
which is complementary to the purely tableau structural pruning methods discussed
so far. In [Letz et al. 1994] it is shown that, for many formulae, cases of goal tree
subsumption inevitably occur during proof search. Since this type of redundancy
cannot be identified with tableau structure refinements like connectedness, regular-
ity, or allies, methods for avoiding tableau subsumption are essential for achieving
a well-performing model elimination proof procedure.

4.2.1. Tableau subsumption vs. regularity

Similar to the case of resolution where certain refinements of the calculus, i.e.,
restrictions of the resolution inference rule, become incomplete when combined
with subsumption deletion, such cases also occur for refinements of tableau calculi.
Formally, the compatibility with subsumption deletion can be expressed as follows.

4.5. DEFINITION (Compatibility with subsumption). A tableau calculus is said to
be compatible with subsumption if any of its tableau search trees 7" has the following

2044 REINHOLD LETZ AND GERNOT STENZ

property. For arbitrary pairs of nodes NV, N' in T, if the goal tree S of the tableau
T at N subsumes the subgoal tree S’ of the tableau 7" at N and if N’ dominates
a success node, then N dominates a success node.

The (connection) tableau calculus is compatible with subsumption, but the inte-
gration of the regularity condition, for example, poses problems.

4.6. PROPOSITION. The regular connection tableau calculus is incompatible with
subsumption.

Clauses: Tableau:
/\
—P(z,y) V -Q(z,y) —P(z,y) —Q(z,y)
P(z,y) v -Q(z,y)
Q(z,y) vV -Q(y,) P(z,y) -Q(z,y)
Q) V P(z.y) N
Q(z,2) Qz,y) —Q(y,z)

/N

Qy,z) P(z,y)

Figure 10: The incompatibility of subsumption and regularity.

PROOF. We use the unsatisfiable set of clauses displayed on the left of Figure 10.
Taking the first clause as top clause and employing the depth-first left-most selection
function, the first subgoal N labelled with ~P(z,y) can be solved by deducing the
tableau T depicted on the right of the figure. Since N has been solved optimally, i.e.,
without instantiating its variables, the subgoal tree of T' subsumes the subgoal trees
of all other tableaux working on the solution of N. Hence, all tableaux competing
with T can be removed by subsumption deletion. But 7' cannot be extended to a
solved tableau, due to the regularity condition, the crucial impediment being that
an extension step into @(z,2) is not permitted, since it would render the already
solved subtableau on the left irregular. To obtain a formula in which subsumption
is fatal for any top clause, one can employ the duplication trick used in [Letz
et al. 1994). a

The obvious problem with regularity is that it applies to entire tableaux whereas
tableau subsumption considers only their subgoal trees. A straightforward solution
therefore is to restrict regularity to subgoal trees, too. The respective weakening
of regularity is called subgoal tree regularity . Similar incompleteness results can
be achieved when combining tableau subsumption with tautology deletion. Here, a
remedy is to ignore the non-tautology conditions of a tableau clause if some of its
literals do not occur in the current subgoal tree. The same argument applies to the
combination of tableau clause subsumption with formula tree subsumption.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2045

4.3. Failure Caching

The observation that cases of subsumption inevitably will occur in practice suggests
organizing the enumeration of tableaux in such a manner that cases of subsump-
tion can really be detected. This could be achieved with a proof procedure which
explicitly constructs competitive tableaux and thus investigates the search tree in
a breadth-first manner. However, as already mentioned, the explicit enumeration
of tableaux or goal trees is practically impossible. But when performing an implicit
enumeration of tableaux by using iterative-deepening search procedures, only one
tableau is in memory at any one time. This renders it very difficult to implement
subsumption techniques in an adequate way. However, we discuss two methods by
which a restricted concept of subsumption deletion can be implemented. The first
paradigm employs intelligent backtracking [Neitz 1995]. This refinement of the stan-
dard Prolog backtracking technique searches the branch for the substitution that
prevents a subgoal from being solved and backtracks to that point. Yet, this is diffi-
cult to do in the non-Horn case or in combination with other pruning mechanisms.
The other paradigm is the use of so-called ”failure caching” methods. The idea
underlying this approach is to avoid the repetition of subgoal solutions which apply
the same or a more special substitution to the respective branch. There are two
approaches, one of which uses a permanent cache [Astrachan and Loveland 1991]
and the other one uses a temporary cache [Letz et al. 1994]. We describe the latter
method, which might be called ”local failure caching” in more detail, because it
turned out to be more successful in practice. Subsequently, we assume that only
depth-first branch selection functions are used.

4.7. DEFINITION (Solution -, failure substitution). Given a tableau search tree T
for a tableau calculus and a depth-first branch selection function, let A" be a node
in T, T the tableau at M and N the selected subgoal in T
1. If N’ with tableau T" is a node in the search tree 7" dominated by A such that
all branches through N in T" are closed, let ¢’ = o, - - - 6, be the composition
of substitutions applied to the tableau T on the way from A to N'. Then the
substitution ¢ = {z/zo’ € ¢’ : z occurs in T'}, i.e., the set of bindings in o' with
domain variables occurring in the tableau T, is called a solution (substitution)
of N at N via N
2. If T is an initial segment of the search tree 7 containing no proof at N or
below it, then the solution o is named a failure substitution for N at N via N'
inT'.

Briefly, when a solution of a subgoal N with a substitution ¢ does not permit to
solve the rest of the tableau under a given size bound, then this solution substitution
is a failure substitution. We describe how failure substitutions can be applied in
a search procedure which explores tableau search trees in a depth-first manner
employing structure sharing and backtracking,.

4.8. DEFINITION (Generation, application, and deletion of a failure substitution).
Let 7 be a finite initial segment of a tableau search tree.

2046 REINHOLD LETZ AND GERNOT STENZ

1. Whenever a subgoal N selected in a tableau T at a search node A in 7 has been
closed via (a sub-refutation to) a node A’ in the search tree, then the computed
solution o is stored at the tableau node N. If the tableau at A cannot be
completed to a closed tableau in 7' and the proof procedure backtracks over
N, then ¢ is turned into a failure substitution.

2. In any alternative solution process of the tableau T below the search node
N, if a substitution 7 = 7, --- 7, is computed such that one of the failure
substitutions stored at the node N is more general than 7, then the proof
procedure immediately backtracks.

3. When the search node N (at which the tableau node N was selected for solu-
tion) is backtracked, then all failure substitutions at N are deleted.

action subgoals substitution | fail.subs.
To start step -P(z),-Q(y), ~R(z) 0 0
Ty P(a) entered -Q(y),~R(a) {z/a}]
T, Q(a) entered -R(a) {z/a,y/a} 0
unification failure -R(a) {z/a,y/a} 0
retract step 2 -~Q(y), ~R(a) {z/a} {y/a}
T Q(b) entered -R(a) {z/a,y/b} {y/a}
unification failure -R(a) {z/a,y/b} {y/a}
retract step 3 -Q(y), ~R(a) {z/a} {y/a}
retract step 1 -P(z),-Q(y), ~R(z)] {z/a}
Ts | P(z) vV ~Q(z) entered | ~Q(z), ~Q(y), ~R(z) {z/=} {z/a}
Ts Q(a) entered —Q(y), ~R(a) {z/a,z/a} {z/a}
Ts | Ts subsumed by Ty -Q(y), ~R(a) {z/a,z/a} {z/a}
retract step 5 -Q(z),~Q(y), ~R(x) {z/z} {z/a}
Ts Q(b) entered -Q(y), ~R(b) {z/b,z/b} {z/a}
Ty Q(a) entered -R(b) {z/b,z/by/a} | {z/a}
Ts R(b) entered {z/b,z/by/a} | {z/a}

Figure 11: Proof search using failure substitutions.

4.9. ExAMPLE. In order to understand the mechanism, we show the method at
work on a specific example.
Let S be the set of the five clauses

-P(z)V-Q(y) V~R(z), P(a), P(2)V-Q(2), Q(a), Q(), R(b).

A possible tableau construction for this clause set is documented in Figure 11.
Assume, we start with the first clause in the set S and explore the corresponding

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2047

tableau search tree using a depth-first left-to-right subgoal selection function, just
like in Prolog. Accordingly, in inference step 1, the subgoal ~P(z) is solved using
the clause P(a). With this substitution, the remaining subgoals cannot be solved.
Therefore, when backtracking step 1, the failure substitution {z/a} is stored at the
subgoal —P(z). The search pruning effect of this failure substitution shows up in
inference step 5 when the failure substitution is more general than the computed
tableau substitution, i.e., the tableau Ty is subsumed by the tableau T7. Without
this pruning method, steps 2 to 4 would have to be repeated.

Note also that one has to be careful to delete failure substitutions under certain
circumstances, as expressed in step 3 of the procedure. This provision applies, for
example, to the failure substitution {y/a} generated at the subgoal ~Q(y) after the
retraction of inference step 2. When the choice point of this subgoal is completely
exhausted, then {y/a} has to be deleted. Otherwise, it would prevent the solution
process of the tableau when, in step 7, this subgoal is again solved using the clause

Q(a).

As already noted in Example 4.9, when the failure substitution {z/a} at ~P(z)
is more general than an alternative solution substitution of the subgoal, then the
subgoal tree of the former tableau subsumes the one of the tableau generated later.
The described method preserves completeness for certain completeness bounds, as
stated more precisely in the following proposition.

4.10. PROPOSITION. Let T be the initial segment of a connection tableau search tree
defined by some subgoal selection function and the depth bound (Section 2.5.2) or
some clause-dependent depth bound (Section 2.5.4) with size limitation k. Assume
a failure substitution o has been generated at a node N selected in a connection
tableau T at a search node N in T via a search node N' according to the procedure
in Definition 4.8. If T, is a closed connection tableau in the search tree T below the
search node N and T the composition of substitutions applied when generating T,
from T, then the failure substitution o is not more general than 7.

PROOF. Assume indirectly, that o is more general than 7, i.e., 7 = 06. Let S, and
S be the subtableaux with root N in T, respectively in the connection tableau at
N'. Then, replacing S. in T, with S8 results in a closed connection tableau T.
Furthermore, it is clear that T, satisfies the size limit k of the completeness bound
used. Now the connection tableau calculus is strongly independent of the selection
function. Consequently, a variant T’ of the tableau T must be contained in the
search tree T below the search node N'. Since T must be closed, too, there must
be a closed tableau below the search node N'. But this contradicts the assumption
of o being a failure substitution. a

The failure caching method described above has to be adapted when combined
with other completeness bounds. While for the (clause-dependent) depth bounds
exactly the method described above can be used, care must be taken when using
the inference bound so as not to lose completeness. It may happen that a subgoal
solution with solution substitution o exhausts almost all available inferences so that

2048 REINHOLD LETZ AND GERNOT STENZ

there are not enough inferences left for the remaining subgoals, and there might
exist another, smaller solution tree of the subgoal with the same substitution which
would permit the solution of the remaining subgoals. Then the failure substitution o
would prevent this. Accordingly, in order to guarantee completeness, the number of
inferences needed for a subgoal solution has to be attached to a failure substitution,
and only if the solution tree computed later is greater or equal to the one associated
with ¢, o may be used for pruning.

Furthermore, when using failure caching together with structural pruning meth-
ods such as regularity, tautology deletion, or tableau clause subsumption, phenom-
ena like the one discussed in Proposition 4.6 may lead to incompleteness. A remedy
is to restrict the structural conditions to the subgoal tree of the current tableau. But
even if this requirement is complied with, completeness may be lost as demonstrated
by the following example.

4.11. EXAMPLE. Let S be the set of the seven clauses
"P(.’l:,b)V-IQ(.’L'), P(:c,b)V—-R(z)V—-P(y,b), P(a’i‘z)? P(sz): R(a')a Q(a)) R(Z)

Using the first clause as start clause and performing a Prolog-like search strategy,
the clause P(z,b) V ~R(z) V ~P(y,b) is entered from the subgoal =P(z,b). Solving
the subgoal ~R(z) with the clause R(a) leads to a tableau structure violation
(irregularity or tautology) when —~P(y,b){z/a} is solved with P(a, z). This triggers
the creation of a failure substitution {z/a} at the subgoal ~R(z). The alternative
solution of ~R(z) (with R(z)) and of ~P(y,b) (with P(a, z)) succeeds, so that the
subgoal =P (z,b) in the top clause is solved with the empty substitution @. The last
subgoal -Q(z) in the top clause, however, cannot be solved using the clause Q(a)
due to the failure substitution {z/a} at ~R(z). This initiates backtracking, and the
solution substitution @ at the subgoal ~P(z, b) is turned into a failure substitution.
As a consequence, any alternative solution of this subgoal will be pruned, so that the
procedure does not find a closed tableau, although the set of clauses is unsatisfiable.
The problem is that the first tableau structure violation encountered has mutated to
a failure substitution {z/a}. The reason for the failure is that the substitution {z/a}
leading to success (i.e. a regular tableau) is blocked by the previous computation of
a different tableau that runs into a regularity violation. One possible solution is to
simply ignore the fatal failure substitution z/a when the respective node -P(z, b)
is solved. In a more general sense, this results in the following modification of
Definition 4.8.

4.12. DEFINITION (Generation, application, and deletion of failure substitutions).
Items 1 and 3 are as in Definition 4.8, item 2 has to be replaced as follows.

2. In any alternative solution process of the subgoal N below the search node
N, if a substitution 7 = 7 -+ 7, is computed such that one of the failure
substitutions stored at the node N is more general than 7, then the proof
procedure immediately backtracks.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2049

In other terms, the failure substitutions at a subgoal have to be deactivated
when the subgoal has been solved. This restricted usage of failure substitutions
for search pruning preserves completeness. It would be interesting to investigate
which weaker restrictions on failure caching and the structural tableau conditions
would still guarantee completeness. With the failure caching procedure described
in Definition 4.12 a significant search pruning effect can be achieved, as confirmed
by a wealth of experimental results [Letz et al. 1994, Moser et al. 1997].

4.8.1. Comparison with other methods

The caching technique proposed in [Astrachan and Stickel 1992] suggests to record
the solutions of subgoals independently of the path contexts in which the subgoals
appear. Then, cached solutions can be used for solving subgoals by lookup instead
of search. In the special case in which no solutions for a cached subgoal exist, the
cache acts in the same manner as the local failure caching mechanism. One differ-
ence is that failure substitutions take the path context into account and hence are
compatible with subgoal tree regularity whereas the caching technique mentioned
above is not. On the other hand, permanently cached subgoals without context
have more cases of application than the temporary and context-dependent failure
substitutions. The main disadvantage of the context-ignoring caching technique,
however, is that its applicability is restricted to the Horn case. Note that the first
aspect of the caching technique mentioned, that is replacing search by lookup, can-
not be captured with a temporary mechanism as described above, since lookup is
mainly effective for different subgoals whereas failure substitutions are merely used
on different solutions of one and the same subgoal.

In [Loveland 1978] a different concept of subsumption was suggested for model
elimination chains. Roughly speaking, this concept is based on a proof transforma-
tion which permits to ignore certain subgoals if the set of literals at the current
subgoals is subsumed by an input clause. Such a replacement is possible, for ex-
ample, if the remaining subgoals can be solved without reduction steps into their
predecessors. In terms of tableaux, Loveland’s subsumption reduces the current
subgoal tree while our approach tries to prune it.

5. Shortening of Proofs

The analytic tableau approach has proven successful, both proof-theoretically and
in the practice of automated deduction. It is well-known, however, since the work
of Gentzen [Gentzen 1935] that the purely analytic paradigm suffers from a fun-
damental weakness, namely, the poor deductive power. That is, for very simple
examples, the smallest tableau proofs may be extremely large if compared with
proofs in other calculi. In this section, we shall present methods which can remedy
this weakness and lead to significantly shorter proofs. The methods we consider
are of two different types. First, we describe mechanisms that amount to adding
additional inference rules to the tableau calculus. The mechanisms are centered
around a controlled integration of the (backward) cut rule. Those mechanisms have

2050 REINHOLD LETZ AND GERNOT STENZ

the widest application, since they already improve the behaviour of tableaux for
propositional logic. Furthermore, we consider an improvement of tableaux which is
first-order by its very nature, since it can be effective for tableaux with free variables
only. It results from the fact that free variables in tableaux need not necessarily be
treated as rigid. This results in a system in which the complexity of proofs can be
significantly smaller than the so-called Herbrand complezity, which for a given set
S of clauses is the complexity of the minimal unsatisfiable set of ground instances
of clauses in S (see [Baaz and Leitsch 1992}).

5.1. Factorization

The factorization rule was introduced to the model elimination format in [Kowalski
and Kuehner 1971] (see also [Loveland 1972]) and used in the connection calculus
[Bibel 1987, Chapter IIL.6], but was applied to depth-first selection functions only
due to format restrictions. On the general level of the (connection) tableau calcu-
lus, which permits arbitrary node selection functions, the rule can be motivated as
follows. Consider a closed tableau containing two nodes N; and N, with the same
literals as labels. Furthermore, suppose that all ancestor nodes of N; are also ances-
tors of N;. Then, the closed tableau part T below N, could have been reused as a
solution and attached to N, because all expansion and reduction steps performed
in T under N, are possible in T under N;, too. This observation leads to the in-
troduction of factorization as an additional inference rule. Factorization permits to
mark a subgoal N; as solved if its literal can be unified with the literal of another
node Ny, provided that the set of ancestors of IV, is a subset of the set of ancestors
of N;; additionally, the respective substitution has to be applied to the tableaux.

5.1. ExXAMPLE. For any set {A;,...,A,} of distinct propositional atoms, let S,
denote the set of all 2" clauses of the shape L1 V...VL, where L; = A; or L; = -4;,
1<i<n.

Figure 12: Tree structure of a minimal closed tableau for Example 5.1, n = 3.

As illustrated with Figure 12 the standard cut-free tableau calculi are intractable
for this class of formulae [Letz 1993, Letz et al. 1994]. Used on the set of clauses

{pVa,pV-q,-pVgq,-pV-q}

MoDEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2051

which denotes an instance of Example 5.1, for n = 2, factorization yields a shorter
proof, as shown in Figure 13. Factorization steps are indicated by arcs. Obviously,
in order to preserve soundness the rule must be constrained to prohibit solution
cycles. Thus, in Figure 13 the factorization of subgoal Ny on the right hand side
with the node N3 with the same literal on the left hand side is not permitted
after the first factorization (node N; with node N;) has been performed, because
this would involve a reciprocal, and hence unsound, employment of one solution
within the other. To avoid the cyclic application of factorization, tableaux have to
be supplied with an additional factorization dependency relation.

@~p/\~q@
YONVEDAN

p @’“q q -p

Figure 13: Factorization step in a connection tableau for Example 5.1, n = 2.

5.2. DEFINITION (Factorization dependency relation). A factorization dependency
relation on a tableau T is a strict partial ordering < on the tableau nodes (N; < N,
means that the solution of N, depends on the solution of N;).

5.3. DEFINITION (Tableau factorization). Given a tableau T and a factorization
dependency relation < on its nodes. First, select a subgoal N; with literal L and
another node N- labelled with a literal K such that
1. there is a minimal unifier o: Lo = Ko,
2. N; is dominated by a node N which has the node N, among its immediate
successors, and
3. N3 £ N,, where N3 is the brother node of N, on the branch from the root
down to and including N;.”
Then mark N, as closed. Afterwards, modify < by first adding the pair of nodes
(N2, N3) and then forming the transitive closure of the relation; finally, apply the
substitution o to the tableau. We say that the subgoal N; has been factorized
with the node N,. The tableau construction is started with an empty factorization
dependency relation, and all other tableau inference rules leave the factorization
dependency relation unchanged.

Applied to the example shown in Figure 13, when the subgoal N is factorized
with the node N2, the pair (N;, N3) is added to the previously empty relation <,

"Note that N3 may be N itself.

2052 REINHOLD LETZ AND GERNOT STENZ

thus denoting that the solution of the node N3 depends on the solution of the node
N;. After that, factorization of the subgoal Ny with the node N3 is not possible
any more.

It is clear that the factorization dependency relation only relates brother nodes,
i.e., nodes which have the same immediate predecessor. Furthermore, the applica-
tions of factorization at a subgoal N; with a node N, can be subdivided into two
cases. Either, the node N, has been solved already, or the node N, or some of the
nodes dominated by N2 are not yet solved. In the second case we shall speak of
an optimistic application of factorization, since the node Ny is marked as solved
before it is known whether a solution exists. Conversely, the first case will be called
a pessimistic application of factorization.

Similar to the case of ordinary (connection) tableaux, if the factorization rule
is added, the order in which the tableau rules are applied does not influence the
structure of the tableau.

5.4. PROPOSITION (Strong node selection independency of factorization).
Any closed (connection) tableau with factorization for a set of clauses constructed
with one selection function can be constructed with any other selection function.

PROOF. See [Letz et al. 1994]. a

Switching from one selection function to another may mean that certain opti-
mistic factorization steps become pessimistic factorization steps and vice versa.
If we are working with subgoal trees, i.e., completely remove solved parts of a
tableau, as done in the chain format of model elimination, then for all depth-first
selection functions solely optimistic applications of factorization can occur. Also,
the factorization dependency relation may be safely ignored, because the depth-first
procedure and the removal of solved nodes render cyclic factorization attempts im-
possible. It is for this reason, that the integration approaches of factorization into
model elimination or into the connection calculus have not mentioned the need for
a factorization dependency relation. Note also that if factorization is integrated
into the chain format of model elimination, then the mentioned strong node selec-
tion independency does not hold, since pessimistic factorization steps cannot be
performed.

The addition of the factorization rule permits the generation of significantly
smaller (connection) tableaux proofs. Thus, for the critical formula class given in
Example 5.1, for which no polynomial tableau proofs exist (see Figure 12), there
exist linear closed connection tableaux with factorization, as shown in Figure 14.
With the factorization rule connection tableaux linearly simulate truth tables. In
fact, the factorization rule can be considered as being a certain restricted version of
the cut rule, which permits to add two new nodes labelled with arbitrary formulae
F and —F, respectively, to any tableau branch. We speak of an atomic cut when F
is an atomic formula.

5.5. PROPOSITION. Atomic cut tableauz can linearly simulate tableauzr with fac-

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2053

/l\

-p -

AT

q -r
/\
p —~¢ -r -p ¢ -r -p ~q r
-q T -p q T

/TN

Y4 q T

4 q or 4

Figure 14: Linear closed connection tableau with factorization for Example 5.1,
n=3.

torization, and regular connection atomic cut tableauz can linearly simulate (con-
nection) tableauz with factorization.

PRroor. We perform the simulation proof for atomic cut tableaux. Given a closed
tableau with factorization, each factorization step of a node N; with a node N,
both labelled with a literal L, can be simulated as follows. First, perform a cut
step with ~L and L at the ancestor N of N, producing new nodes Ny and Ns;
thereupon, move the tableau part formerly dominated by N below Ny; then, remove
the tableau part underneath N, and attach it to Ns; finally, perform reduction steps
at N7 and N,. The simulation is graphically shown in Figure 15. O

While it is an open problem whether clausal tableaux with factorization can
polynomially simulate atomic cut tableaux, connection tableaux with factorization
cannot even polynomially simulate pure clausal tableaux (without atomic cut), as
will be discussed in the next subsection.

5.2. The Folding Up Rule

The so-called folding up rule is an inference rule which, for connection tableaux, is
stronger than factorization concerning deductive power. Folding up generalizes the
c-reduction rule introduced to the model elimination format in [Shostak 1976]. In
contrast to factorization, for which the pessimistic and the optimistic application
do not differ concerning their deductive power, the shortening of proofs achievable
with folding up results from its pessimistic nature. The theoretical basis of the rule
is the possibility of extracting bottom-up lemmata from solved parts of a tableau,
which can be used on other parts of the tableau (as described in [Loveland 1968]

2054 REINHOLD LETZ AND GERNOT STENZ

PN
I ® @)~ L ®

L (v)
1
Solution of Ny
O

Solution of N2

@)L

Figure 15: Simulation of factorization by cut rule applications.

and [Letz et al. 1992), or [Astrachan and Loveland 1991]). Folding up represents a
particularly efficient realization of this idea.

We explain the rule with an example. Given the tableau displayed on the left of
Figure 16, where the arrow points to the node at which the last inference step (a
reduction step with the node 3 levels above) has been performed. With this step we
have solved the dominating nodes labelled with the literals r and g¢. In the solutions
of those nodes the predecessor labelled with p has been used for a reduction step.
Obviously, this amounts to the derivation of two lemmata —rV —p and —~gV —p from
the underlying formula. The new lemma —q V —p could be added to the underlying
set and subsequently used for extension steps (this has already been described in
[Letz et al. 1992}). The disadvantage of such an approach is that the new lemmata
may be non-unit clauses, as in the example, so that extension steps into them
would produce new subgoals, together with an unknown additional search space.
The redundancy introduced this way can hardly be controlled.

With the folding up rule a different approach is pursued. Instead of adding lem-
mata of arbitrary lengths, so-called contezt unit lemmata are stored. In the dis-
cussed example, we may obtain two context unit lemmata:

—r, valid in the (path) context p, and
=g, valid in the context p.

Also, the memorization of the lemmata is not done by augmenting the input for-
mula but within the tableau itself, namely, by “folding up” a solved node to the
edge which dominates its solution context. More precisely, the folding up of a solved

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2055

P t P t
-p q s -t P 8 —~p q s -t P 3
/\ l */\ N
-q r -8 r -gq r -8 T
* /‘ * * /l *
-r op e -r -p
* * * *

Figure 16: Connection tableau before and after folding up three times.

node N to an edge E means labelling E with the negation of the literal at N. Thus,
in the example in Figure 16 the edge E above the p-node on the left-hand side of
the tableau is successively labelled with the literals —-r and —g, as displayed on the
right-hand side of Figure 16; lists of context-unit lemmata are shown as framed
boxes. Subsequently, the literals in the boxes at the edges can be used for ordinary
reduction steps. So, at the subgoal labelled with r a reduction step can be per-
formed with the edge F, which was not possible before the folding up. After that,
the subgoal s could also be folded up to the edge E, which we have not done in
the figure, since after solving that subgoal the part below E is completely solved.
But now the p-subgoal on the left is solved, and we can fold it up above the root of
the tableau; since there is no edge above the root, we simply fold up into the root.
This folding up step facilitates that the p-subgoal on the right can be solved by a
reduction step.

The gist of the folding up rule is that only unit lemmata are added, so that the
additionally imported indeterminism is not too large. Over and above that, the tech-
nique gives rise to a new form of pruning mechanism called strong regularity, which
is discussed below. Furthermore, the folding up operation can be implemented very
efficiently, since no renaming of variables is needed, as in a full lemma mechanism.

In order to be able to formally introduce the inference rule, we have to slightly
generalize the notion of tableaux.

5.6. DEFINITION ((Marked) edge-labelled tableau). A (marked) edge-labelled tableau
(E-tableau) is just a tableau as introduced in the Definitions 2.1 and 2.5 with the
only modifications that also the edges and the root node are labelled by the la-
belling function A, namely, with lists of literals. Additionally, in every extension
and reduction step, the closed branch is marked with the respectively used ances-

2056 REINHOLD LETZ AND GERNOT STENZ

tor literal. The path set of a non-root node N in an E-tableau is the union of the
sets of literals at the nodes dominating NV and in the lists at the root and at the
edges dominating the immediate predecessor of N.

5.7. DEFINITION (E-tableau folding up). Let T be an E-tableau, N a non-leaf node
with literal L and the subtree below N be closed. The insertion position of the literal
~L is computed as follows. From the markings of all branches dominated by N select
the set M of nodes which dominate N (M contains exactly the predecessor nodes
on which the solution of N depends).
1. If M is empty or contains the root node only, then add the literal ~L to the
list of literals at the root.
2. Otherwise, let N’ be the deepest path node in M. Add the literal ~L to the
list of literals at the edge immediately above N'.8

As an illustration, consider Figure 16, and recall the situation when the ‘g’-node
N on the left has been solved completely. The markings of the branches dominated
by N are the ‘r’-node below N and the ‘p’-node above N. Consequently, ~q is added
to the list at the edge E.

Additionally, the reduction rule has to be extended, as follows.

5.8. DEFINITION (E-tableau reduction). Given a marked E-tableau T, select a sub-
goal N with literal L, then,

1. either select a dominating node N’ with literal ~K and a minimal unifier o for
L and K, and mark the branch with N/,

2. or select a dominating edge or the root E with ~K in A(F) and a minimal
unifier o for L and K; then mark the branch with the node immediately below
the edge or with the root, respectively.

Finally, apply the substitution o to the literals in the tableau.

The tableau and the connection tableau calculus with folding up result from the
ordinary versions by working with edge-labelled tableaux, adding the folding up
rule, substituting the old reduction rule by the new one, starting with a root labelled
with the empty list, and additionally labelling all newly generated edges with the
empty list. Subsequently, we will drop the prefix ‘E-’ and simply speak of ‘tableaux’.

The soundness of the folding up operation is expressed in the following proposi-
tion.

5.9. PROPOSITION (Soundness of folding up). Let N be any subgoal with literal L
in a marked tableau T, P the path set of N, and S a set of clauses. Suppose T'
is any tableau deduced from T incorporating folding up steps and employing only
clauses from S in the intermediate eztension steps. Then, for the new path set P’
of N inT': PUS logically implies P'.

8The position of the inserted literal exactly corresponds to the C-point in the terminology used
in [Shostak 1976]. ’

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2057

PROOF. The proof is by induction on the number n of folding up steps between T'
and T’. The base case for n = 0 is trivial, since P’ = P. For the induction step, let
P' = P™ be the path set of N after the n-th folding up step inserting a literal, say
L', into the path above N. This step was the consequence of solving a literal ~L’
with clauses from S and path assumptions from P"~1, i.e., the path set of N before
the n-th folding up step. This means that P*~*USU{~L'} is unsatisfiable. Now, by
the induction assumption, PUS = P™!. Consequently, PUS = P""1U{L'} = P'.
a

It is obvious that if a depth-first selection function is used and N is not yet solved
in T', then all clauses in S are tableau clauses dominated by N or a brother node
of N. This knowledge is used in the proof of Theorem 6.11 below.

In [Letz et al. 1994], it is proven that, for connection tableaux, the folding up rule
is properly stronger concerning its deductive power than the factorization rule. In
fact, the formula class used in this proof can also be used to show that connection
tableaux with factorization cannot even polynomially simulate the pure clausal
tableau calculus (without the atomic cut rule).

5.10. PROPOSITION. Connection tableauz with factorization cannot polynomially
simulate connection tableauzr with folding up.

PROOF. See [Letz et al. 1994). O

Conversely, for a certain class of selection functions, the polynomial simulation
in the other direction is possible.

5.11. PROPOSITION. For arbitrary depth-first selection functions, (connection)
tableauz with folding up linearly simulate (connection) tableauz with factorization.

PROOF. Given any closed (connection) tableau 7" with factorization, let < be its
factorization dependency relation. By the strong node selection independency of
factorization (Proposition 5.4), T' can be constructed with any selection function.
We consider a construction C = (Tp,...,Tn,T) of T with a depth-first selection
function ¢ which respects the partial order of the factorization dependency relation
<, i.e., for any two nodes Ny, N, in the tableau, N; < N, means that N is selected
before N3; such a selection function exists since < solely relates brother nodes. The
deduction process C can directly be simulated by the (connection) tableau calcu-
lus with folding up, as follows. Using the same selection function ¢, any expansion
(extension) and reduction step in C is simulated by an expansion (extension) and
reduction step. But, whenever a subgoal has been completely solved in the simula-
tion, it is folded up. Since in the original deduction process, due to the pessimistic
application of factorization, the factorization of a node Ny with a node N; (with
literal L) involves that N; has been solved before, in the simulation the literal L
must have been folded up before. Now, any solved node can be folded up at least
one step, namely, to the edge E above its predecessor (or into the root). Since F

2058 REINHOLD LETZ AND GERNOT STENZ

(or the root) dominates Ny, the original factorization step can be simulated by a
reduction step. The simulation of factorization by folding up is graphically shown
in Figure 17. a

A

| folded up after

having solved N2

&~

@ L (@)

L Solution of No L Solution of N2

Figure 17: Simulation of factorization by folding up.

Finally, we show that the folding up rule, though properly more powerful than
factorization, is still a hidden version of the cut rule.

5.12. PROPOSITION. Atomic cut tableauz and atomic cut regular connection
tableauz linearly simulate (connection) tableauz with folding up.

ProOF. We perform the simulation proof for atomic cut tableaux. Given a tableau
derivation with folding up, each folding up operation at a node Np adding the
negation ~L of the literal L at a solved node to the label of an edge above a node
N (or to the root), can be simulated as follows. Perform a cut step at the node
N with the atom of L as the cut formula, producing two new nodes N; and N»
labelled with L and ~L, respectively; shift the solution of L from Ny below the node
N and the part of the tableau previously dominated by N below its new successor
node N; finally, perform a reduction step at the node Np. It is obvious that the
unmarked branches of both tableaux can be injectively mapped to each other such
that all pairs of corresponding branches contain the same leaf literals and the same
sets of path literals, respectively. The simulation is graphically shown in Figure 18.
a

Connection tableaux with folding up can linearly simulate atomic cut tableaux.
This is a straightforward corollary of a result proven in [Mayr 1993].

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2059

® D)

: t(w) ~L ()
e N
Solution of L |

L,--- L .
*

&~

Solution of L

Figure 18: Simulation of folding up by the cut rule.

5.3. The Folding Down Rule

The simulation of factorization by folding up also shows how a restriction of the
folding up rule can be defined which permits an optimistic labelling of edges. If a
strict linear (dependency) ordering is defined on the successor nodes Ny, ..., Ny, of
any node, then it is permitted to label the edge leading to any node N;, 1 < i <m,
with the set of the negations of the literals at all nodes which are smaller than
N; in the ordering. We call this operation the folding down rule. The folding down
operation can also be applied incrementally, as the ordering is completed to a linear
one. The folding down rule is sound, since it can be simulated by the cut rule plus
reduction steps, as illustrated in Figure 19. The rule is a very simple and efficient
way of implementing factorization. Over and above that, if the literals on the edges
are also considered as path literals in the regularity test, an additional search space
reduction can be achieved this way which is discussed in the next section. It should
be noted that it is very difficult to identify this refinement in the factorization
framework. There, it is normally formulated in a restricted version, namely, as the
condition that the set of literals at the subgoals of a tableau need to be consistent.

5.13. PROPOSITION. (Regular) (connection) tableauz with folding down and (reg-
ular) (connection) tableauz with factorization linearly simulate each other.

PROOF. See [Letz et al. 1994]. a

5.14. REMARK. Folding down is essentially Prawitz reduction [Prawitz 1960].

2060 REINHOLD LETZ AND GERNOT STENZ

L L, L3 / \\

L Ly L3

Figure 19: Simulation of folding down by cut.

Hence, by the above proposition, Prawitz reduction and factorization have the
same deductive power when added to the connection tableau calculus, and Prawitz
reduction is properly weaker than folding up and atomic cut.

5.4. Universal and Local Variables

The improvement of the tableau rules that we investigate in this part is of a quantifi-
cational nature. It deals with the problem that normally free variables in tableaux
are considered as rigid, i.e., each as a place holder for an unknown ground term.
Accordingly, every occurrence of a literal in a tableau can be used in one instance
only. The simple reason is that tableau branches are disjunctively connected and
the universal quantifier does not distribute over disjunctions. Under certain cir-
cumstances, however, such a distribution is possible and the respective variables
may be read as universally quantified on the branch. The formulae containing
such variables can then be used in different instances concerning the universal
variables contained, which can permit a significant shortening of proofs. A very
general definition of so-called universal variables is formulated in [Beckert and
Hahnle 1992, Beckert 1998, Beckert and Héhnle 1998] as well as in [(Hahnle 2001]
(Chapter 3 of this Handbook). In its final reading, a variable z in a formula F on
a branch of a general free-variable tableau T is universal if the formula VzF may
be added to the tableau branch and the formula of the resulting tableau is logically
implied by the formula of T

5.4.1. Local variables

Obviously, this definition is too general to be of any practical use, since this property
of a variable is undecidable. One simple sufficient condition for being universal
which applies to the case of clauses is that a variable occurs in only one literal of

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2061

a clause. For connection tableaux, a proof shortening effect can only be achieved
this way if this occurs in non-unit clauses, since unit clauses can be freely used
in new instances without producing new open branches. Unfortunately, such non-
unit clauses do rarely occur in practice. Consequently, in [Letz 19984, Letz 1999],
the notion of local variables has been developed, which has more applications in
connection tableaux.

5.15. DEFINITION (Local variable). Given an open tableau branch B of a clausal
tableau, if a variable occurs on B and on no other open branch of the tableau,
then z is called local (to B).

Obviously, every local variable is universal. How can this property of a variable be
utilized in detail? If a variable z in a formula F is universal, then the formula Yz F'
could be added to the branch without affecting the soundness of the calculus. As a
matter of fact, this generalization rule is merely of a theoretical interest. Since we
are only interested in calculi performing atomic branch closure, it is clear that the
new formulae have to be decomposed by the «-rule of free-variable tableaux, thus
producing a variant of the formula F in which the variable z is renamed. And, since
in connection tableaux instantiations are only performed in inference steps closing
a branch, one can perform the generalization implicitly, exactly at that moment.
This naturally leads to a generalized version of the unification rule.

5.16. DEFINITION (Local unification rule). Let K and L with universal variables
Ti,...,Zn and yy,...,yn respectively be two literals to be unified in an inference
step in a tableau T. Obtain K’ by replacing all occurrences of zi1,...,z, in K
with distinct new variables not occurring in T'; afterwards obtain L' by doing the
same for L (i.e., perform no simultaneous replacement in K and L). If there is a
(minimal) unifier for K’ and L', apply ¢ to the tableau and close the respective
branch.? If the set of universal variables is determined by the locality condition, we
speak of the local unification rule.

The local extension rule and the local reduction rule are obtained from the
standard rules by replacing standard unification with local unification.

The proof shortening effect of the local closure rule can be demonstrated by
considering the set of the two clauses R(z) V R(f(z)) and =R(z) V =R(f(f(z))),
and the closed tableau shown in Figure 1. With the local unification rule one can
obtain the significantly smaller closed tableau displayed in Figure 20. Assume the
tableau construction is performed using a left-most branch selection function. The
crucial difference occurs when the entire left subtree has been closed and the right-
most subgoal ~R(f(f(f(z)))) is extended using the first input clause with the first
literal as entry literal. Since the variable z in the subgoal is local, it is renamed to,
say y, which eventually leads to attachment of the tableau clause R(f(f(f(v))))

9Note that this rule is more powerful than the extension of unification defined in [Beckert and
Hiahnle 1998]. For example, a branch containing two formulae P(z) and -P(f(z)) with universal
variable £ may be closed.

2062 REINHOLD LETZ AND GERNOT STENZ

(R(z) V R(f(2))) A (~R(z) V ~R(f({(=))))

~R(f(z)) —~R(£((f(=))))
R(f(=)) R(f(£(=))) R(f(FUSW)))) RUFSUFWN))
—R(z) —R(f(f(2)))
R(z) R(f(=))

Figure 20: Closed clausal tableau with local unification rule.

and R(f(f(f(f(y))))) and the closure of the left-most new branch. The remaining
subgoal R(f(f(f(f(y))))) can then be closed by a (local) reduction step.

Note that the tableau displayed in Figure 20 has no closed ground instance, in
contrast to the tableau calculi developed so far that have the ground projection
property [Baaz and Leitsch 1992], i.e., when substituting ground terms for the
variables in a tableau proof for a set of clauses S, the resulting tableau remains
closed and all tableau clauses are instances of clauses in S. The modified tableau
system with the local unification rule permits to build refutations that are smaller
than the so-called Herbrand complexity of the input, which normally is a lower
bound to any standard tableau proof; the Herbrand complezity of an unsatisfiable
set, of clauses S is the complexity of the smallest unsatisfiable set of ground instances
of clauses in S. It is evident, however, that tableau calculi containing the local
unification rule are not independent of the branch selection function. If we would
select the subgoals on the right before complete closure of the left subtree, z would
not be local and hence the proof shortening effect would be blocked. Consequently,
with the local unification rule, the order in which branches are selected can influence
the size of minimal tableau proofs. Note that the same holds for the folding up rule
discussed in Section 5.2.

6. Completeness of Connection Tableaux

In this section we will provide completeness proofs for the most important of the
new calculi.

6.1. Structurally Refined Connection Tableaur

First, we consider the case of connection tableaux with the structural refinements of
regularity, strong connectedness, and the use of relevance information, which were

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2063

mentioned in Section 3. Since the path connectedness condition is less restrictive,
it suffices to consider the full connectedness condition. Unfortunately, we cannot
proceed as in the case of free-variable tableaux or general clausal tableaux. Since
the connection tableau calculus lacks proof confluence, the standard completeness
proof using Hintikka sets cannot be applied. Instead, an entirely different approach
for proving completeness will be used. The proof consists of two parts. In the first
part, we demonstrate the completeness for the case of ground formulae—this is the
interesting part of the proof. In the second part, this result is lifted to the first-
order case by a standard proof technique. Beforehand, we need some additional
terminology.

6.1. DEFINITION (Strengthening). The strengthening of a set of clauses S by a set
of literals P = {L,,...,L,}, written P > S, is the set of clauses obtained by first
removing all clauses from S containing literals from P and afterwards adding the
n unit clauses Lq,..., Ly,.

6.2. EXAMPLE. For the set of propositional clauses S = {pV ¢,pVs,—pV q,q},
the strengthening {p} > S is the set of clauses {p,~pV ¢, —q}.

Clearly, every strengthening of an unsatisfiable set of clauses is unsatisfiable. In
the ground completeness proof, we will make use of the following further property.*°

6.3. LEMMA (Strong Mate Lemma). Let S be an unsatisfiable set of ground clauses.
For any literal L contained in any relevant clause ¢ in S there exists a clause ¢' in
S such that

(i) ¢’ contains ~L,

(i) every literal in ¢’ different from ~L does not occur complemented in c, and
(i) ' is relevant in the strengthening {L} > S.

PROOF. From the relevance of c follows that S has a minimally unsatisfiable subset
So containing c¢; every formula in Sy is essential in Sp. Hence, there is an inter-
pretation Z for So with Z(Sg \ {¢}) = true and Z(c) = false, hence Z(L) = false.
Define another interpretation Z' by setting Z'(L) = true and otherwise Z' = Z. Then
Z'(c) = true. The unsatisfiability of Sy guarantees the existence of a clause ¢’ in Sp
with Z'(c') = false. We prove that ¢’ meets the conditions (i) — (iii). First, the clause
¢’ must contain the literal ~L and not the literal L, since otherwise Z(c') = false,
which contradicts the selection of Z, hence (i). Additionally, for any literal L' in ¢’
different from ~L: Z(L') = T'(L') = false. As a consequence, L' cannot occur com-
plemented in c, since otherwise J(c) = true; this proves (ii). Finally, the essentiality
of ¢’ in Sy entails that there exists an interpretation Z" with Z"(Sp \ {c'}) = true
and I"(¢') = false. Since ~L is in ¢’, Z"(L) = true. Therefore, ¢’ is essential in
So U {L}, and also in its unsatisfiable subset {L} > So. From this conclusion and

10In terms of resolution, it expresses the fact that, for any literal L in a clause c that is relevant
in a clause set S, there exists a non-tautological resolvent “over” L with another relevant clause
in S.

2064 REINHOLD LETZ AND GERNOT STENZ

from the fact that {L} > Sp is a subset of {L} > S follows that ¢’ is relevant in
{L}> S. m}

6.4. PROPOSITION (Ground completeness of regular strong connection tableaux).
For any finite unsatisfiable set S of ground clauses and for any clause ¢ which is
relevant in S, there exists a closed regular strong connection tableau for S with top
clause c.

PRrOOF. Let S be a finite unsatisfiable set of ground clauses and ¢ any relevant
clause in S. A closed regular strong connection tableau T for S with top clause
¢ can be constructed from the root to its leaves via a sequence of intermediate
tableaux as follows. Start with a tableau consisting simply of ¢ as the top clause.
Then iterate the following non-deterministic procedure, as long as the intermediate
tableau is not yet closed.

Choose an arbitrary open leaf node N in the current tableau with literal L. Let
¢ be the tableau clause of N and let P = {L;,...,Lm,L}, m > 0, be the set of
literals on the path from the root up to the node N. Then, select any clause ¢’
which is relevant in P > S, contains ~L, is strongly connected to ¢, and does
not contain literals from the path {L,,...,Lm, L}; perform an expansion step
with ¢ at the node N.
First, note that, evidently, the procedure admits solely the construction of regular
strong connection tableaux, since in any expansion step the attached clause contains
the literal ~L, no literals from the path to its parent node (regularity), nor does
¢ contain a literal different from ~L which occurs complemented in ¢. Due to
regularity, there can be only branches of finite length. Consequently, the procedure
must terminate, either because every leaf is closed, or because no clause ¢’ exists
for expansion which meets the conditions stated in the procedure. We prove that
the second alternative does never occur, since for any open leaf node N with literal
L there exists such a clause ¢'. This will be demonstrated by induction on the node
depth. The induction base, n = 1, is evident, by the Strong Mate Lemma (6.3). For
the step from n to n + 1, with n > 1, let N be an open leaf node of tableau depth
n + 1 with literal L, tableau clause ¢, and with a path set P U {L} such that c is
relevant in P> S, the induction assumption. Let Sy be any minimally unsatisfiable
subset of P > S containing ¢, which exists by the induction assumption. Then, by
the Strong Mate Lemma, S contains a clause ¢’ which is strongly connected to ¢
and contains ~L. Since no literal in P! = PU{L} is contained in a non-unit clause
of P' > S and because N was assumed to be open, no literal in P’ is contained
in ¢ (regularity). Finally, since Sp is minimally unsatisfiable, ¢’ is essential in Sp;
therefore, ¢ is relevant in P' > S. O

The second half of the completeness proof uses a standard lifting argument.
6.5. LEMMA (Lifting Lemma). Let S and S’ be two sets of clauses such that every

clause in S' is an instance of a clause in S. Let furthermore Tg,..., T, be any
sequence of successive (regular) (path) (connection) tableauz for S'. Then there

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2065

exists a sequence Ty, ..., T, of successive (regular) (path) (connection) tableaux for
the set S such that T}, is an instance of Ty, i.e., T, = Ty0, for some substitution o,
and, for every branch B' in T,,, B' is closed if and only if its corresponding branch
B in T, is closed.

PRrOOF. The proof is straightforward by induction on the length of the construction
sequence. The induction base, n = 1, is trivial. For the induction step, let T}, be
obtained from T, by applying on a branch B’ with subgoal N’ either (1) a closure
step or (2) an expansion or (3) a (path) extension step using a clause from S’ with
matrix ¢’. Now let B with subgoal N be the branch in T}, corresponding to B'. In
case (1), N' must have a complementary ancestor node. Select one, say N, and
let N, be its corresponding node in T},. Since, by the induction assumption, T}, is
an instance of T}, there exists a (minimal) unifier 7 for the literal at N and the
complement of the literal at N,. Obtain Ty, by applying 7 to T}, and closing B.
In case (2), select a clause ¢ from S such that ¢r = ¢/, for some substitution 7
(such a clause exists by assumption) and obtain T},4; by performing an expansion
step using c at B. Case (3) is just a combination of (2) and (1), because a (path)
extension step is an expansion step followed by a certain closure step. In all cases,
the same branches are closed in both tableaux and T, is an instance of Thyi.
Therefore regularity is preserved, since any tableau which has a regular instance
must also be regular.]

6.6. THEOREM. For any unsatisfiable set S of clauses, there exists a closed regular
connection tableau.

Proor. First, by Herbrand’s completeness theorem, there exists a finite unsatisfi-
able set S’ of ground instances of clauses in S. Let T' be a closed regular ground
connection tableau for S’ which exists by Proposition 6.4. The Lifting Lemma then
guarantees the existence of a closed regular connection tableau T" for S. ||

6.2. Enforced Folding and Strong Regularity

The folding up operation has been introduced as an ordinary inference rule which,
according to its indeterministic nature, may or may not be applied. Alternatively,
we could have defined versions of the (connection) tableau calculi with folding up
in which any solved node must be folded up immediately after it has been solved.
It is clear that whether folding up is performed freely, as an ordinary inference rule,
or in an enforced manner, the resulting calculi are not different concerning their
deductive power, since the folding up operation is a monotonic operation which
does not decrease the inference possibilities. But the calculi differ with respect
to their search spaces, since by treating the folding up rule just as an ordinary
inference rule, which may or may not be applied, an additional and absolutely
useless form of indeterminism is imported. Consequently, the folding up rule should
not be introduced as an additional inference rule, but as a tableau operation to be

2066 REINHOLD LETZ AND GERNOT STENZ

performed immediately after the solution of a subgoal. The resulting calculi will be
called the (connection) tableau calculi with enforced folding up.

The superiority of the enforced folding up versions over the unforced ones also
holds if the regularity restriction is added, according to which no two nodes on a
branch can have the same literal as label. But the manner in which the folding up
and the folding down rules have been introduced raises the question whether the
regularity condition might be sharpened and extended to the literals in the labels
of the edges as well. It is clear that such an extension of regularity is not compatible
with folding up, since any folding up operation causes the respective closed branch
to immediately violate the extended regularity condition. A straightforward remedy
is to apply the extended condition to the subgoal trees of tableaux only.

6.7. DEFINITION (Strong regularity). A tableau T is called strongly regular if it is
regular and no literal at a subgoal N of T is contained in the path set of N.

When the strong regularity condition is imposed on the connection tableau cal-
culus with enforced folding up, then a completely new calculus is generated which
is no extension of the regular connection tableau calculus, that is, not every proof
in the regular connection tableau calculus can be directly simulated by the new
calculus. This is because after the application of a folding up operation certain in-
ference steps previously possible for other subgoals may then become impossible.
A folding up step may even lead to an immediate failure of the extended regularity
test, as demonstrated below. Since the new calculus is no extension of the regular
connection tableau calculus and therefore the completeness result for regular con-
nection tableaux cannot be applied, its completeness is not to be taken for granted.
In fact, the new calculus is incomplete for some selection functions.

6.8. PROPOSITION. There is an unsatisfiable set S of ground clauses and a se-
lection function ¢ such that there is no refutation for S in the strongly regular

connection tableau calculus with enforced folding up.

6.9. ExaAMPLE. The set S consisting of the clauses

-pV-sV-r, pVvsvVvr, -qVr, qV r,
pVtVu, pV -tV u, -qVs, qV s,
qVt, gV -,
-qVu, qV u,

PROOF. Let S be the set of clauses given in Example 6.9, which is minimally
unsatisfiable. The non-existence of a refutation with the top clause p vV s vV r for
a certain unfortunate selection function ¢ is illustrated in Figure 21. There, the
tableau extension steps are shown using black lines while the grey lines indicate
the different alternatives for such extensions. If ¢ selects the s-node, then two
alternatives exist for extension. For the one on the left-hand side, if ¢ shifts to the
p-subgoal above and completely solves it in a depth-first manner, then the enforced
folding up of the p-subgoal immediately violates the strong regularity, indicated

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2067

with a ‘4’ below the responsible —p-subgoal on the left. Therefore, only the second
alternative on the right-hand side may lead to a successful refutation. Following the
figure, it can easily be verified that for any refutation attempt there is a selection
possibility which either leads to extension steps which immediately violate the old
regularity condition or produce subgoals labelled with —p or —r. In those cases,
the selection function always shifts to the respective p- or r-subgoal in the top
clause, solves it completely and folds it up afterwards, this way violating the strong
regularity. Consequently, for such a selection function, there is no refutation with
the given top clause. The same situation holds for any other top clause selected
from the set. This can be verified in a straightforward though tedious manner. [0

P 8- T
e -~ T —-—
U \7\
_.P/ﬁsR—lr R q e - -8
v e .»«/-,;‘-;;_::‘/“’ . o .
g 5§ —q t g U g T
6 i \\ // TN . y 7/ ‘\\
At p/,t\—- q/\—-u pﬂ—-t\—m q/\r -p -8 v
s PN
5 / \\ 5 //_// ~ 17 $

N
-p t u —-p =8 v =-p t u -p -8 U

g 7 4 4

Figure 21: Incompleteness for free selection functions of the strongly regular con-
nection tableau calculus with enforced folding up.

This result demonstrates that there is a trade-off between optimal selection func-
tions and structural restrictions on tableaux. It would be interesting to investigate
under which weakenings of the strong regularity the completeness for arbitrary
selection functions might be obtained.

If we restrict ourselves to depth-first selection functions, however, the calculus is
complete, as shown next.

We are now going to present completeness proofs for two calculi, for strongly
regular connection tableaux with enforced folding up using depth-first selection

2068 REINHOLD LETZ AND GERNOT STENZ

functions and for strongly regular connection tableaux with enforced folding down
using arbitrary selection functions. The completeness proofs are based on the follow-
ing non-deterministic procedure for generating connection tableaux which is similar
to the one used in the proof of proposition 6.4 However, in the following procedure a
mapping « is carried along as an additional control structure which, upon selection
of a subgoal N, associates with N a specific subset a(N) of the input clauses.

6.10. PROCEDURE. Let Sp be a finite unsatisfiable set of ground clauses, ¢y any
clause which is relevant in Sp, and ¢ any subgoal selection function. First, perform
a start step with the clause ¢y at the root Ny of a one-node tableau, select a subset
S of Sp with ¢g being essential in S, and set a(Ng) = S. Then, as long as applicable,
iterate the following procedure.

Let N be the subgoal selected by ¢, P the path set of N, L the literal and c
the tableau clause at N, and S = a(N') where N' is the immediate predecessor
node of N.
If ~L € P, perform a reduction step at N.
Otherwise, perform an extension step at N with a clause ¢’ in S such that
¢ is relevant in (PU{L}) > S, select a subset S’ of S with ¢’ being essential
in the set (PU{L})> S', and set a(N) = 5.
Additionally, depending on the chosen extension of the calculus, enforced fold-
ing up or folding down operations need to be applied.

It suffices to perform the completeness proofs for the ground case, since the lifting
to the first-order case is straightforward, using the Lifting Lemma (6.5).

6.11. THEOREM (Completeness for enforced folding up). For any finite unsatisfi-
able set Sy of ground clauses, any depth-first subgoal selection function, and any
clause cg which is relevant in Sy, there exists a refutation of So with top clause co
in the strongly regular connection tableau calculus with enforced folding up.

PROOF. Let Sp be a finite unsatisfiable set of ground clauses, ¢y any relevant clause
in Sp, and ¢ any depth-first subgoal selection function. We demonstrate that any
deterministic execution of Procedure 6.10 including enforced folding up operations
leads to a refutation in which only strongly regular connection tableaux are con-
structed. We start with a tableau consisting simply of ¢ as the top clause, and let
a map the root to any subset S of Sp in which ¢y is essential. Then we prove by
induction on the number of inference steps needed for deriving a tableau that

(i) any generated tableau T is strongly regular, and

(ii) an inference step can be performed at the subgoal ¢(T') according to Proce-

dure 6.10.

The induction base, n=0, is evident. For the induction step, let T' be a tableau
generated with n > 0 inference steps, N = ¢(T") with literal L and path set P, ¢
the tableau clause at N, N’ the immediate predecessor of N, and a(N') = S. Two
cases have to be distinguished.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2069

Case 1. Either, the last node selected before N was N'. In this case, by the induction
assumption and the fact that Procedure 6.10 only permits extension (or start) steps
with clauses not containing literals from the path set P, it is guaranteed that T is
strongly regular, hence (i). By the induction assumption, c is essential in P > S.
Consequently, due to the Strong Mate Lemma, an inference step according to the
procedure can be performed at N, therefore (ii).

Case 2. Or, the last inference step before the selection of N completely solved a
brother node of V. In this case, after having entered the clause ¢, additional literals
may have been inserted by intermediate folding up operations. We show that the
resulting tableau is still strongly regular. For this purpose let N; be an arbitrary
subgoal in T', L; the literal and ¢; the clause at N;, P; its (extended) path set in T,
and N} the immediate predecessor of N;. With S; we denote the clause set a(N;).
Furthermore, let T* be the former tableau resulting from the extension step at N’
into the clause ¢, and P} the path set of N; in T*. By the induction assumption,
L; is not contained in P}. According to Procedure 6.10, in the solutions of brother
nodes of N; only clauses from the set S; \ {c;} are permitted for extension steps.
Due to the depth-first selection function, the solution process of brother nodes of
N is a subprocess of the solution process of brother nodes of IV;. Therefore, by the
soundness of the folding up rule (Proposition 5.9), the set of literals K; inserted
into P} during the derivation of T from T* is logically implied by the satisfiable set
A; = (P¥US;) \ {ci}. Since, by the induction assumption, A; U{c;} is unsatisfiable,
A; U{L;} is also unsatisfiable. Consequently, L; ¢ K;, and hence L; ¢ P;. Since
this holds for all subgoals of T, T must be strongly regular, which proves (i).
Furthermore, all ¢; remain essential in the sets P; U S;. Therefore, by the Strong
Mate Lemma, at the subgoal N in T an inference step according to Procedure 6.10
can be performed, hence (ii).

Now we have proven that the procedure produces only strongly regular connection
tableaux and whenever the procedure terminates, it must terminate with a closed
tableau. Finally, the termination of the procedure follows from the fact that, for
any finite set of ground clauses, only strongly regular tableaux of finite depth exist.
a

6.12. THEOREM (Completeness for enforced folding down). For any finite unsatis-
fiable set Sy of ground clauses, any subgoal selection function, and any clause co
which is relevant in Sp, there ezists a refutation of Sp with top clause co in the
strongly regular connection tableau calculus with enforced folding down.

ProOF. The structure of the proof is the same as the one for folding up, viz., by
induction on the number of inference steps it has to be shown that properties (i)
and (ii) from the proof of Theorem 6.11 apply. Therefore, only the induction step is
carried out. Suppose a subgoal N is selected with literal L, tableau clause ¢, path
set P, and a(N') = S for the immediate predecessor N' of N. The enforced folding
down operation inserts the negations of the literals at the unsolved brother nodes
of N into the edge leading to N before the subgoal NV is solved. First, we prove that
such steps always preserve the strong regularity condition. Clearly, folding down

2070 REINHOLD LETZ AND GERNOT STENZ

operations can only violate this condition for tautological tableau clauses. Since no
tautological clause can be relevant in a set and Procedure 6.10 only permits the use
of relevant clauses, no tautological clause can occur in a generated tableau, hence
(1)- It remains to be shown that any selected subgoal can be extended in accordance
with Procedure 6.10. By the induction assumption, c is essential in P > S. Hence,
there is an interpretation Z with Z(c) = false and Z((P > S) \ {c}) = true. We
prove that any folding down operation preserves the essentiality of the clause c.
Let P' = {~Kj,...,~K,} be the set of literals inserted above N in a folding down
operation on the literals Kj,. .., K, at the other subgoals in c. Clearly, Z(~K;) =
true, for all literals in P’. Therefore, c is essential in P’ U (P > S) and hence also in
its unsatisfiable subset (P’ U P) > S. Therefore (ii) also applies. a

7. Architectures of Model Elimination Implementations

All competitive implementations of model elimination are iterative-deepening
search procedures using backtracking. When envisaging the implementation of such
a procedure, one has the choice between fundamentally different architectures, for
reasons we will now explain. As indicated at the end of Section 2.7.1, it is straight-
forward to recognize that SLD-resolution (the inference system underlying Prolog)
can be considered as a refinement of model elimination obtained by simply omit-
ting the reduction inference rule. Since highly efficient implementation techniques
for Prolog have been developed, one can profit from these efforts and design a
Prolog Technology Theorem Prover (PTTP). The crucial characteristic of Prolog
technology is that input clauses are compiled into procedures of a virtual or actual
machine which permits a very efficient execution of the extension operation. There
are even two different approaches taking advantage of Prolog technology. On the
one hand, one can build on some of the efficient implementation techniques of Pro-
log and add the ingredients needed for a sound and complete model elimination
proof procedure. On the other hand, one can use Prolog itself as implementation
language with the hope that its proximity to model elimination permits a short and
efficient implementation of a model elimination proof search procedure. The PTTP
approaches, both of which will be described in this section, have dominated the
implementations of model elimination in the last years. The use of Prolog technol-
ogy, however, has a severe disadvantage, namely, that the framework is not flexible
enough for an easy integration of new techniques and new inference rules. This in-
flexibility has almost blocked the implementations of certain important extensions
of model elimination, in particular, the integration of inference mechanisms for an
efficient equality handling. Therefore, we also present a more natural and modular
implementation architecture for model elimination, which is better suited for var-
ious extensions of the calculus. Although this approach cannot compete with the
PTTP approaches concerning the efficiency by which new instances of input clauses
are generated, this drawback can be compensated for by an intelligent mechanism
of reusing clause copies, so that about the same high rates of inferences per seconds
can be achieved for the typical problems occurring in automated deduction.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2071

Vigls)

nilI T gle

-

Figure 22: Internal representation of the clause P(a, f(z,z)) V -Q(b, 9(g(x)))-

7.1. Basic Data Structures and Operations

When analyzing the actual implementations of model elimination, one can identify
some data structures and operations that are more or less common to all successful
approaches and hence form some kind of a standard framework. The first subject is
the way formulae are represented internally in order to permit efficient operations
on them. It has turned out that all terms, literals, and clauses may be represented
in a natural tree manner except variables, which should be shared. In Figure 22,
such a standard representation of a clause is illustrated. The treatment of variables
needs some further explanation. Internally, variables are typically represented as
structures consisting of their actual bindings and their print names with nil indicat-
ing that the variable is currently free. Variables are not identified and distinguished
by their print names but by the addresses of their structures.

7.1.1. Unification

The next basic ingredient is the unification algorithm employed, which is specified
generically in Table 2. In the displayed procedures, it is left open how variable
bindings are performed and retracted. Unification is specified with two mutually
recursive procedures, the first one for the unification of two lists of terms, the
other one for the unification of two terms. The standard in model elimination
implementations is that a binding is performed destructively by deleting nil from the
variable cell and inserting a pointer to the term to be substituted for the variable.
The resulting bound variable cell then does no more denote a variable but the
respective term. The recursive function binding(term) returns term if term is not
a bound variable cell, or otherwise binding(first(term)). On backtracking, variable
bindings have to be retracted. This is done by simply reinserting nil in the first

2072 REINHOLD LETZ AND GERNOT STENZ

procedure unify_lists(args;.argsz)
if (args; =0) then
true;
/* check first arguments */
elseif (unify(binding(first(args;)),binding(first(argsz)))) then
unify_lists(rest(args;),rest(argss));
/* undo variable bindings made in this procedure */
else
unbind;
false;
endif;

procedure unify(arg;.args)
if ((is_var(argy)) then
if (occurs(args,arg;)) then
false;
else
bind(argq,arg;);
true;
endif;
elseif (is.var(arg;)) then
if (occurs(argy,args)) then
false;
else
bind(arg;.arg:);
true;
endif;
elseif (functor(arg;) == functor(arg,)) then
unify_lists(args(arg,),args(argz2))i
else
false;
endif;

Table 2: The unification procedures.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2073

element of the respective bound variable cells, so that the original state is restored.
unbind causes the bindings of the whole unification attempt to be retracted.

7.1.2. Polynomial unification

It is straightforward to recognize that this unification procedure is linear in space
but exponential in time in the worst case. Although this is not a critical weakness
for the typical formulae in automated deduction, one may easily improve the given
procedure to a polynomial time complexity by using methods described in [Corbin
and Bidoit 1983]. The key idea of such methods is that one attaches an additional
tag to any complex term. This tag is employed to avoid that the same pairs of
complex terms are successfully unified more than once during a unification opera-
tion. Furthermore, this tag can be used to reduce the number of occurs checks to a
polynomial (see also [Letz 1993, Letz 1999]).

7.1.3. Destructive unification using the trail

In order to know which bound variables have to be unbound, the tra:l is used as a
typical data structure. The trail is a global list-like structure in the program which
contains the pointers to the bound variables in the order in which they have been
bound. Since all standard backtracking procedures retract bindings exactly in the
reversed order of their generation, a simple one-dimensional list-like structure is
sufficient for the trail. The trailmarker is a global variable which gives the current
position of the trail. The number of bindings performed may differ from one infer-
ence step to another. In order to know how many bindings have to be retracted
when an inference step is retracted, there are two techniques. One possibility is to
locally store either the number of performed bindings or the trail position at which
the bindings of the previous inference step start. Alternatively, one can use a special
stop label on the trail which is written in a trail cell whenever an inference step
ends; in this case, no local information is needed. Depending on which solution is
selected, the unification procedure has to be modified accordingly.

Figure 23 documents the entire binding process and the trail modifications per-
formed during proof search for the set of the four clauses -~P(z,y) V -P(y, z),
P(a,z), P(b,v), and Q(a,b). The description begins after the start step in which
the first input clause has been attached (a). First an extension step using the sec-
ond input clause is performed, which produces two bindings (b). Then an extension
step with the Q-subgoal is attempted: y (and implicitly z) are bound to a, but
the unification fails when a (the binding of) is compared with b (c). Next the
two inferences are retracted (d). After extension steps using the third clause (e)
and the fourth clause (f), the proof attempt succeeds. This technique permits that
backtracking can be done very efficiently.

7.1.4. The connection graph

The connection condition from Definition 2.3 is a prerequisite for any model elim-
ination extension step. Therefore it is advantageous to be able to quickly find the
complementary literals for a selected subgoal. The set of connections between the

2074 REINHOLD LETZ AND GERNOT STENZ

/N N

-P(z,y) -Q(y,x) ﬂP(Iz, y) -Qy,z) -~P(z,y) -Q(y,z)
| |
P(a,z) P(a,z) Q(a,b)
* *
Trailmarker Trailmarker Trailmarker

~ -
semory: il 2][T Jpilly] [afa][s[=][]w] [ef=][3]=][e]s]
(a) (b)

/N

)

=P(z,y) -Q(y,x) HP(Iz, y) —Q(y.z) ﬁP(Iz,) -'Q(ly, z)
P(b,v) P,v) Qab)
* * *
Trailmarker Trailmarker Trailmarker

s[RI 1] [E,I@EJE[D] inininumn|
memory: il o | [T [is] ~ [o]=][s]e][i]4] IZJE]F@/IZEI

(d) () (f)

Figure 23: An example of the trail modifications during proof search.

literals of a clause set can be represented in an undirected graph, the so-called con-
nection graph. When a subgoal is selected for an expansion step during the proof
search, it is sufficient to consider the connections involving that subgoal.

7.1. EXAMPLE. To demonstrate the concept of the connection graph, we consider
the clauses ~P(g(z)) vV ~Q(9(z)) v ~Q(f()), Q(z) V ~P(f(2)), Q(g(v)) V P(f(¥))
and P(f(a))- The connection graph of this set of clauses is shown in Figure 24. The
connections are indicated by the solid lines between the literals. The faint dashed
lines show the pairs of literals where, even though they have the same predicate
symbol and complementary signs, the argument terms cannot be unified. These
literals are not connected. Thus, when the literal ~P(g(z)) has been chosen for an
extension step, the clause Q(g(y)) V P(f(y)) need not be tried.

Since the variables in clauses are all implicitly universally quantified, the connec-
tions between literals are independent of any instantiations applied during the proof

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2075

search. Therefore, the computation of the literal connections can be done statically
and used as a filter. If, generally speaking, there is a connection (P, Q) in a set of-
clauses, then the literal P is also said to have a link to literal @Q and vice versa.
Thus, each literal has a list of links. The link lists for the literals in Example 7.1
are:

P(g(a)): {-P(g(z)}
-P(g(z)): {P(g(a))}
~Qg(z)): {Q(9(v)); ()}
-Q(f(z)): {Q(z)}

Q(z): {-Q(g(=)), ~Q(f(z))}

-~P(f(z)): {P(f(¥)}

P(f): {-~P(f(2))}

Qle(v): {-Q(9(=))}

~P(g(2)) v-Qlg(z)) v ~Q(f(z))

\

Q) v ~P(/(z))

ot

Qew)) v P(f@))

Figure 24: The connection graph for the clause set ~P(g(z))V-Q(g(z))V-Q(f(z)),
Q(z) vV -P(f(=)), Q(g(y)) vV P(f(y)) and P(g(a)).

7.1.5. The problem of generating clause variants

One of the main difficulties when implementing model elimination procedures is
how to provide renamed variants of input clauses efficiently, because in every ex-
tension step a new variant of an input clause is needed. It is obvious that the
generation of a new variant of an input clause by copying the clause and replacing
its variables consistently with new ones is a time consuming operation, all the more
since variables are shared and it is not a tree that has to be copied but a graph.
The search for an efficient solution of this problem naturally leads to the use of
Prolog technology.

2076 REINHOLD LETZ AND GERNOT STENZ

7.2. Prolog Technology Theorem Proving

One reason for the high efficiency of current Prolog systems is the fact that many
of the operations to be performed in SLD-resolution steps can be determined in ad-
vance depending on the respective clause and its entry literal. This information can
be used for compiling every Prolog input clause A :- A;,...,A, (which corresponds
to the clause AV ~A; V ---V ~A, with entry literal A) into procedures of some
actual or virtual machine. Since SLD-resolution steps are nothing else but extension
steps, this technique can also be applied to model elimination. The first one to use
such a compilation method for model elimination was Mark Stickel [Stickel 1984]
who called his system a PTTP, a Prolog Technology Theorem Prover.

In summary, the main deficiencies of Prolog as far as first-order automated rea-
soning is concerned are the following:

1. the incompleteness of SLD-resolution for non-Horn formulae,

2. the unsound unification algorithm, and

3. the unbounded depth-first search strategy.

To extend the reasoning capabilities of Prolog to full model elimination, it is
necessary to extend SLD-resolution to the full extension rule and to add the start
rule and the reduction rule.

7.2.1. Contrapositives

In order to implement the full extension rule and to further permit the compilation
of input clauses into efficient machine procedures, one has to account for the fact
that a clause may be entered at every literal. Accordingly, one has to consider all
so-called contrapositives of a clause Ly V- -+ V Ly, i.e., the n Prolog-style strings of
the form L; :- ~Ly,...,~L;_1,~L;41,...,~L,. The start rule can also be captured
efficiently, by adding a contrapositive of the form L :- ~L,...,~L,, for every input
clause Ly V --- V L,. Now, with the Prolog query 7- 1 as the single start clause,
all start steps can be simulated with extension steps. As a matter of fact, one can
use relevance information here and construct such start contrapositives only for
subsets of the input clause set containing a relevant start clause; by default, start
contrapositives are generated for the set of all-negative input clauses.

7.2.2. Unification in Prolog
Prolog by default uses a unification algorithm that is designed for maximum effi-
ciency but that can lead to incorrect results.!! A Prolog program like

X< (Xx+1).

- (Y+1) <V,
can prove that there is a number whose successor is less than itself; the reason for
the unsoundness is that no occurs check is performed in Prolog unification. Since the
compilation of extension steps into machine procedures also concerns parts of the
unification, this compilation process has to be adapted such that sound unification

115ome Prolog systems provide sound unification via compile time and/or runtime options or
via libraries.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2077
Contrapositive: P(a, f(z,z)) - Q(b, g(g(z)))

procedure P(argy.args)
variable z,t,arg21,ar 922, trail_position;
z := new_free_variable;
arg, = binding(arg;);
/* mark trail position */
trail _position := trailmarker;
/* unify clause head: check first arguments */
if (isvar(arg;) or (is_const(arg;) and arg; == a)) then
if (is.var(arg;)) then bind(arg;.a); endif;
/* first arguments unifiable, check second arguments */
argy = binding(arg;);
if (is_var(arg2)) then
bind(args,make_complex_term(f,z,z));
t, := make_complex_term(g, make_complex_term(g,z));
add_subgoal(Q(b, t,));
next_subgoal;
elseif (is_.complex_term(args) and functor(argz) == f) then
args; := binding(get_arg(arg2,1));
argz := binding(get.arg(arg2,2));
if (unify(arge1,argsz)) then
t, := make_complex_term(g, make_complex_term(g,args1));
add_subgoal(Q(b,t,)):
next_subgoal;
endif;
endif;
endif;
/* undo variable bindings made in this procedure */
unbind(trail_position);

Table 3: Compilation of a contrapositive into a procedure.

is performed. In special cases, however, efficiency can be preserved, for example,
if the respective entry literal L is linear, i.e., if every variable occurs only once in
L. 1t is straightforward to recognize that in this case, no occurs check is needed
in extension steps and the highly efficient Prolog unification can be used. For the
general case, an ideal method takes advantage of this optimization by distinguishing
the first occurrence of a variable in a literal from all subsequent ones. For every
first occurrence, the occurs check may be omitted. In Table 3, a procedure is shown
which performs an extension step including the generation of a new clause variant
in a very efficient manner.

2078 REINHOLD LETZ AND GERNOT STENZ

7.2.3. Path information and other extensions

Unfortunately, for the implementation of the reduction inference rule, one definitely
has to provide additional data structures. While in SLD-resolution the ancestor
literals of a subgoal are not needed, for model elimination the tableau paths have
to be stored and every subgoal must have access to its path. This additional effort
cannot be avoided. On the other hand, access to the ancestors of a subgoal is
necessary for the implementation of basic refinements like regularity, which is also
very effective in the pure Horn case.

Finally, the unbounded depth-first search strategy of Prolog has to be extended
to incorporate completeness bounds like the inference bound, the depth bound or
other bounds discussed in Section 2.5. It turned out in general that this can be
achieved with the following additional data structures. In order to capture bounds
which allocate remaining resources directly to subgoals such as the depth bound,
every subgoal has to be additionally labelled with its current depth. When inference
bounds are involved, a global counter is needed.

7.8. Extended Warren Abstract Machine Technology

As described in [Stickel 1984], PTTP implementations perform their tasks in two
distinct phases. First the input formula is translated to Prolog code which in the
second phase is compiled into (real or virtual) machine code. The main problem
of such a two-step compilation, first to some real programming language and then
to native code, is that the second compilation process takes too much time for
typical applications, which require short response times. In order to avoid the second
compilation phase, an interpreter for the code generated in the first compilation
phase has to be used. Since the full expressive power of an actual programming
language is not needed, this has caused the development of a very restricted abstract
language tailored specifically to the processing of Prolog or model elimination,
respectively. We begin with a description of the basics of such a machine for Prolog
(see [Warren 1983] and [Schumann 1991] for a more detailed description).

7.8.1. The Warren Abstract Machine

D.H.D. Warren developed a virtual machine for the execution of Prolog pro-
grams [Warren 1983] which is called the Warren Abstract Machine (WAM). It
combines high efficiency, good portability, and the possibility for compiling Pro-
log programs. The WAM is widely used and has become a kernel for commer-
cial Prolog systems, implemented as software emulation or even micro-coded on
dedicated hardware [Taki, Yokota, Yamamoto, Nishikawa, Uchida, Nakashima and
Mitsuishi 1984, Benker, Beacco, Bescos, Dorochevsky, Jeffré, P6hlmann, Noyé, Po-
terie, Sexton, Syre, Thibault and Watzlawik 1989]. The WAM is structured as a
register-based multi-memory machine as shown in Figure 25. Its memory holds the
program (as a sequence of WAM instructions) and data. The register file keeps
a certain set of often used data and control information. The WAM instruction,
located in the memory at the place where the program counter register points to,

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2079

is fetched and executed by the control unit.

REGISTERS
tagged MEMORY
STACK
HEAP
TRAIL
CONTROL UNIT

Figure 25: The Warren Abstract Machine

Next we will describe how a Prolog program is compiled into machine instruc-
tions of the WAM. We begin with the special case of a deterministic program which
corresponds to a situation in which there is only one possibility for extending the
subgoals of the clause. In this case no backtracking inside the clause is needed. The
respective tableau is generated using a depth-first left-to-right selection function.
Then the program can be executed in the same manner as in a procedural pro-
gramming language, that is, the head of a clause is considered as the head of a
procedure and the subgoals as the procedure calls of other procedures (the param-
eter passing, however, is quite different). Accordingly, this can be implemented on
a machine level exactly in the way it is done in functional or procedural languages,
using a stack with environment control blocks which hold the control information
(return address, dynamic link) and the local variables. A detailed explanation of
these concepts can be found e.g. in [Aho and Ullman 1977]. The local variables are
addressed using a register E pointing to the beginning of the current environment.
A Horn clause H :- G1,...,Gn. is executed using the following instructions!2.

H: % entry point for clause H.
allocate % generate new environment (on stack) with space for locals
% pass parameters (discussed below)
. % set parameters for G1 (discussed below)
call Gl % call first subgoal, remember return address A

A: .
. % set parameters for Gn (discussed below)
call Gn % call last subgoal, remember return address
deallocate % deallocate control block and return

Each environment contains a pointer to the previous environment (dynamic link).
The entire list, in effect, represents the path from the root to the current node in the

12 Actually, the WAM provides a number of different instructions for the sake of optimization,
e.g., for tail recursion elimination. Here, only the basic instructions are described.

2080 REINHOLD LETZ AND GERNOT STENZ

tableau, the return addresses in the environments point to the code of the subgoals.
The program terminates when the last call in the query returns.

The parameters of the head and the subgoals of the clauses are terms in a logi-
cal sense consisting of constants, logical variables, lists'®, and structures (complex
terms). A Prolog term is represented by a word of the memory, containing a value
and a tag. The tag distinguishes the type of the term, namely reference, structure,
list, and constant. The tag type “reference” is used to represent the (logical) vari-
ables. Structures are represented in a non structure-sharing manner, i.e. they are
copied explicitly with their functors.

For the purposes of parameter passing, the WAM uses two sets of registers, the
registers A,,..., A, for keeping parameters and temporary registers 11,...,Th,.
When a subgoal is to be called, its parameters are provided in the registers A;
by using put instructions. There exists one put instruction for each data type. In
the head of a clause, the parameters in the A registers are fetched and compared
with the respective parameter of the head, using a get or unify instruction. Here
again, a separate instruction for each data type is provided. The matching algorithm
has to check if constants and functors are equal. If a variable has to be bound to
a constant, the value of the constant and the tag “constant” is written into the
memory location where the variable resides; if the variable is bound to a structure,
a pointer to that structure is written into the variable cell, together with the tag
“reference”. Structures themselves are created in a separate part of memory, the
heap, to ensure their permanent storage.

An example illustrates the usage of the instructions to pass the parameters. Let
us assume that a subgoal P(a,z) calls a head of a clause P(a, f(z,y)) - The
variables reside in the environment control block and are accessed via an offset from
the register F pointing to the current environment. In [Warren 1983] they are noted
as 11,...,Y,.

put_constant a,Al % put first parameter (constant a) into register Al
put_variable Y4,A2 ¥ put variable z (in variable cell #4) into A2
call P % call the "P-clause"
P:

allocate 2 % allocate space for 2 variables
get_const a,Al % try to unify 1st parameter with constant a
get_structure £/2,A2 7 get second argument: must be a structure or

% a variable to be bound to a new structure
unify_variable Y1 % unify with first arg (in local cell #1)
unify_variable Y2 % unify with second arg (in local cell #2)

% body of clause comes here

This example also shows that the get and unify instructions must operate in
two modes (“read”,“write”) according to the type of parameter they receive. If the
variable z in the subgoal has been bound to some function symbol prior to this call,
for example, to f(a,b), then the list is taken apart by the get_1ist instruction and
z and y in the head of P are bound to a respectively to b (read mode). If, however, z

13 A list is considered as a data type of its own for reasons of efficiency. A list could also be
represented as a binary structure: list(Head, T'ail) comparable to a Lisp cons-structure.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2081

in the subgoal has not yet been bound to a function symbol, a new binary function
symbol with two variables as arguments is created as a structure on the heap by
the instructions get_structure and unify variable (write mode). Note that the
creation on the heap is necessary, since the newly created structure has to stay in
existence even after the execution of the clause P.

Finally, let us consider the full case of nondeterministic programs, in which a
subgoal of a clause unifies with more than one (complemented) head of a clause, in
which case backtracking is needed. Backtracking is implemented by means of so-
called choice points, control blocks which hold all the information for undoing an
inference step. These choice points are pushed onto the stack. The basic information
of a choice point is a link to its predecessor, a code address to the entry point of
the next clause to be attempted, and the information that is needed to undo all
extension steps executed since that choice point was created. This involves a copy
of all registers of the WAM as well as the variables which have been bound since
the generation of the choice point. For the latter purpose a trail is used, in the
same manner as described in Section 7.1. Whenever a backtracking action has to
be performed, all registers from the current choice point are loaded into the WAM,
all stack modifications are undone, and the respective variables are unbound. Then
the next clause is attempted. The WAM contains a last alternative optimization,
according to which the choice point can be discarded if the last extension clause
is tried. The list of different possibilities is coded by the instructions try me_else,
and trustme_else fail, the latter representing the last alternative. Assuming
that there are three clauses cl, ¢2, ¢3 for extension, the compiled code is shown
below.

call P % call the P-clauses

P: % generate a choice-point.
c123:
try_me_else C2a % try ci; if this fails, try c2
cl:
% code of clause cl
c2a:
try_me_else C3a % try c2; if this fails, try c3
c2:
% code of clause c2
c3a:
trust_me_else_fail % there is only one alternative left
c3:

% code of clause c3

The WAM has some additional instructions for optimization which we do not
consider here. First, a dynamic preselection on the data type of the first parameter
is done (switch_on_term). Its arguments give entry points of lists of clauses which
have to be tried according to the type of the first parameter of the current subgoal
(variable, constant, list, structure). Also hash tables are used for selection of a clause
head, which is useful when there is a large number of head literals with constants
as first arguments.

2082 REINHOLD LETZ AND GERNOT STENZ

7.3.2. The SETHEQ abstract machine

Inspired by the architecture of the WAM, the SETHEO model elimination prover
[Letz et al. 1992] has been implemented. The central part of SETHEO is the
SETHEO Abstract Machine (SAM), which is an extension of the WAM. The con-
cepts introduced there had to be extended and enhanced for attaining a complete
and sound proof procedure for the model elimination calculus, and for facilitating
the use of advanced control structures and heuristics. A detailed description of all
the instructions and registers of the original version is available as a manual [Letz,
Schumann and Bayerl 1989]. The layout of the abstract machine is basically the
same as in Figure 25, except that additional space is reserved for the proof tree and
the constraints, which are discussed in Section 8. The proof tree stores the current
state of the generated tableau, which can be displayed graphically to illustrate the
structure of the proof. Additionally, there are global counters, e.g. for the number
of inferences performed.

In the following we will point out and explain some of the most important dif-
ferences between the SAM and the WAM.

The Reduction Step. In order to successfully handle non-Horn clauses in model
elimination, extension steps and reduction steps are necessary. A subgoal in the
tableau can be closed by a reduction step if there exists a complementary unifiable
literal in the path from the root to the current node. The resulting substitution o
is then applied to the entire tableau. How can this reduction step be implemented
within the concepts of an Abstract Machine? As described above, the tableau is
implicitly represented in the stack of the machine, using a linked list of environment
control blocks. This linked list just represents the path from the root of the tableau
to the current node'. Thus, the instruction executing the reduction step searches
through this list, starting from the current node, to find a complementary literal
which is unifiable with the current subgoal. The respective unification is carried out
in the standard way. This procedure, however, requires that additional information
must be stored in each environment, namely, the predicate symbol of the head literal
of a contrapositive, its sign, and a pointer to the parameters of that literal. The
detailed structure of an environment of the SAM is displayed in Figure 26, the base
pointer points to the current environment in the stack.

The reduction inference rule itself is nondeterministic in the sense that a subgoal
may have more than one connected predecessor literal in the path. Hence, we have
to store an additional pointer in every choice point, pointing to the environment
which corresponds to the node which will be tried next for a reduction step.

Efficiency Considerations. To increase the efficiency of the SETHEO machine,
a tagged memory is used. The basic types of variables, terms, constants and ref-
erence cells, which are used in the Warren Abstract Machine, are divided into
further subtypes in order to gain a better performance (compare also [Vlahavas
and Halatsis 1987]). Thus, for instance, the type ‘variable’ has the subtypes: ‘free

14por this reason no tail recursion optimization is allowed as it is done in the WAM. This
optimization tries to throw away environments as soon as possible, e.g., before executing the last
subgoal of a clause.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2083

base pointer — | dynlink | link to previous environment
ret.addr | return address
pssymb | coded predicate symbol and sign

gp pointer to goal environment in the code
variables | local variables for that clause

Figure 26: The SAM environment

variable’ (T_FVAR), ‘temporary variable’ (T_-TVAR), and ‘bound variable’, i.e. a ref-
erence cell (T_BVAR). Additionally, complex terms are tagged differently depending
on whether they contain variables or not. The additional information contained in
these tags can be used for optimizing the unification operation.

Parameter Transfer. In the original WAM, parameter transfer from a subgoal to
a head of a clause is done via the A; registers. As the number of registers had to
bé minimized and the ability to deal with a variable number of parameters was
required, this solution was not suitable for the SAM. Instead, the parameters are
transferred via an argument vector. This approach originates from [Vlahavas and
Halatsis 1987], but had to be adapted. The number of parameters of a subgoal
and their types are fixed. The only exception are variables, which may be unbound
or bound to an arbitrary object. Consequently, an argument vector is generated
in the code area during compilation which contains the values and data types of
the parameters. For variables an offset into the current environment is given. After
dereferencing this address, the object to which the variable is bound can be accessed.
The only information directly passed during the execution of a call instruction is
the address of the beginning of this argument vector. It is put into the register gp
(goal pointer). After the selection of a head of a clause, the unification between the
parameters of the goal and those of the head starts. For each parameter in the head,
a separate unify instruction is used which tries the unification with the parameter
gp points to, and, in the case of success, increments gp. The following example
shows the construction of the argument vector. Consider a subgoal P(a,z, f(z)).
It will generate something like the following argument vector consisting of three
words.

gp: T_CONST 16 % 1st argument: constant a as index into symbol table
T_VAR1 1 % 2nd: variable x with offset 1 (w.r.t.\ environment)
T_CREF terml % 3rd: pointer to term f(x)

terml: T_NGTERM 17 % functor f with index 17
T_VAR2 1 % variable x (second occurrence)
T_EOSTR 0 % end of the structure

2084 REINHOLD LETZ AND GERNOT STENZ
7.4. Using Prolog as an Implementation Language

The preceding section has shown that implementing model elimination by extend-
ing Prolog technology requires considerable effort. Since SLD-resolution is very
similar to model elimination, many newer implementations of model elimination
are done directly in Prolog. We will now consider the potential of using Prolog
as an implementation language. It is easy to see that a basic implementation of
model elimination can be obtained in Prolog with a few straightforward additions.
For this purpose, we need to explicitly create all contrapositives and a mechanism
for performing reduction steps has to be provided. Both can be done in a simple
and methodical way, as will be demonstrated with the following formula proposed
by J. Pelletier in [Pelletier and Rudnicki 1986]. We have written the problem in
Prolog-like notation, i.e., with variables in capital letters and function and predi-
cate symbols in lower case letters. A semi-colon is used when more than one positive
literal is in a clause.

< — p(a,b).

< - q(c,d).

p(X,2) <- p(X,Y), p(Y,2).

q(X,2) < - q(X,V), q(Y,2).

p(X,Y) < - p(Y,0).

p&X,Y) ; q(X,V) < -.

The transformation starts by forming the Horn contrapositives for the input
clauses, as shown in Section 7.2.1. To simulate the negation sign, predicate sym-
bols are preceded with labels, p- for positive literals and n_ for negative literals.
Additionally, start clauses are added as Prolog queries.

Furthermore, to overcome the incompleteness of Prolog for non-Horn formulae,
we need to simulate the reduction operation. This is done as follows. First, the paths
are added as additional arguments to the logical arguments of the respective literals.
For optimization purposes, we use two path lists, one for the positive and one for
the negative literals in the respective path. In each extension step, the respective
path list is extended by the respective literal. Finally, for actually enabling the
performance of reduction steps, an additional clause is added for each predicate
symbol and sign that tries all unifiable literals in the path list. The output then
looks as follows.

% Start clauses
false :- p_p(a,b, [1,[1).

false :- p_q(c,d, [1,0 1).

% Contrapositives
n_p(a,b, P, N).

n_q(c,d, P, N).

p-p(X,Z, P,N) :- N

1 p(x,2) | N 1, p_p(k,Y, P,N1), p_p(Y,Z, P,N1).
n_p(X,Y, P,N) :- P1

p&x,V) | P 1, n_p(X,z, P1,N), p_p(Y,Z, P1,N).

[
[

MoDEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2085

n_p(Y,Z, P,N) :- P1

[p(Y,2) | P1, n_p(X,Z, P1,N), p_p(X,Y, P1,N).

p_q(X,Z, P,N) :- N1
n_q(X,Y, P,N) :- P1
n_q(Y,Z, P,N) :- P1

[qx,2) | N1, p_q(x,Y, P,N1), p_q(Y,Z, P,N1).
[qx,Y) | P], n_q(X,2, P1,N), p_q(Y,Z, P1,N).
{ q(¥,2) | PJ, n_g(x,2, P1,N), p_q(X,Y, P1,N).

p_p(X,Y, P,N) :- N1 = [p(x,Y) | N1, p_p(Y,X, P,N1).
n_p(Y,X, P,N) :-P1 = [p(Y,X) | P11, n_p(X,Y, P1,N).

p-p(X,Y, P,N) :- N1 = [p(X,¥) | N1, n_q(X,Y, P,N1).
P_q(X.Y. P’N) = N1 = [q(X,Y) ' N], n-p(X,Y, P,Ni).

% Clauses for performing reduction steps
n_p(X,Y, P,N) :- member(p(X,Y), N).
p_p(X,Y, P,N) :- member(p(X,Y), P).
n_q(X,Y, P,N) :- member(q(X,Y), N).
pr_q(X,Y, P,N) :- member(q(X,Y), P).

member(X,[X | R 1).
member(X,[Y | R]) :- member(X,R).

What is missing in order to perform a complete proof search, is the implementa-
tion of a completeness bound and the iterative deepening. We consider the case of
the tableau depth bound (Section 2.5.2), which can be implemented by adding the
remaining depth resource D as an additional argument to the literals in the con-
trapositives and start clauses. After having entered a contrapositive, it is checked
whether the current depth resource is > 0, in which case it is decremented by 1
and the new resource is passed to the subgoals of the clause. For start clauses, the
depth may be passed unchanged to the subgoals.

% for contrapositives
P(...,D) :- D >0, D1 is D-1, Pi1(...,D1), ..., Pn(...,D1).

% for start clauses
false(D):- P1(...,D), ..., Pn(...,D).

When posing the query, say, false(5), the Prolog backtracking mechanism will
automatically ensure that all connection tableaux up to tableau depth 5 are ex-
amined. Finally, the iterative deepening is handled by simply adding the following
clause to the end of the program.

false(D) :- D1 is D+1, false(D1).

After having loaded such a program into Prolog (in some Prolog systems the
clauses have to be ordered such that all predicates occur consecutively), one can
start the proof search by typing in the query: 7- false(1).

For the discussed example, the Prolog unification (which in general is unsound)
poses no problem, since no function symbol of arity > 0 occurs. In the general case,
however, one has to use sound unification. Some Prolog systems offer sound unifi-
cation, often in various ways. Either the system has a sound unification predicate
in its library or sound unification can be switched on by setting a global flag. While

2086 REINHOLD LETZ AND GERNOT STENZ

the latter is more comfortable, it may lead to unnecessary run-time inefficiencies,
since the occurs check is always performed even if it would not be needed according
to the optimizations discussed in the previous sections. Such an optimization may
also be achieved in a Prolog implementation by linearization of the clause heads
(for which Prolog unification may be used then) and a subsequent sound unification
of the remaining critical terms (see, for example, [Plaisted 1984]).

In summary, this illustrates how surprisingly simple it is to implement a pure
model elimination proof search procedure in Prolog. Furthermore, such an imple-
mentation also yields a very high performance in terms of inference steps performed
per second. The approach of using Prolog, however; becomes more and more prob-
lematic when trying to implement model elimination proof procedures with more
advanced search pruning mechanisms such as the ones discussed in Section 3 and
Section 4.

7.5. A Data Oriented Architecture

The prover architectures described so far all rely on the approach of compiling
the input clauses and some parts of the inference system into procedures, the ones
creating Prolog source code and the ones generating native or abstract machine
instructions. The inference rules and important subtasks such as the unification
algorithm, the backtracking mechanism, or the subgoal processing are deeply in-
tertwined and standardized in order to achieve high efficiency. Such an approach is
suitable when a certain kind of optimized proof procedure has evolved for which no
obvious improvements are known. In automated theorem proving, however, this is
not the case. New techniques are constantly developed which may lead to significant
improvements. Against this background, the most important shortcoming of Prolog
technology based provers is their inflexibility. Changing the unification such as to
add sorts, for example, or adding new inference rules, e.g., for equality handling,
or generalizing the backtracking procedure becomes extremely cumbersome if not
impossible in such an architecture.

Accordingly, as the last of the architectures, we discuss a more natural or straight-
forward implementation of the model elimination procedure, in the sense that the
components of the program are modularized and can be identified more naturally
with their mathematical definitions. Since the most important difference to Prolog
technology style provers is that clauses are represented as data structures and do
not become part of the prover program, such an approach will be called a data ori-
ented proof procedure, as opposed to the clause compilation procedures. Unlike the
WAM-based architectures, which heavily rely on the implicit encoding of the proof
in the program execution scheme, the proof object here is the clausal tableau, which
is completely stored in memory. Although this leads to a larger memory consump-
tion, it causes no problems in practice, as today’s computers have enough main
storage space to contain the proof trees for practically all feasible proof problems.
Only very large proofs, that means proofs with more than, say, 100,000 inferences
become unfeasible with the data oriented concept.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2087

An implementation of this data oriented approach, the SETHEQO-based prover
system Scheme-SETHEOQ, has been partially completed.

7.5.1. The basic data structures
The data objects used in this approach can be categorized into formula data objects
and proof data objects. The basic formula data objects are the (input) formula, the
clauses, the clause copies and the subgoals. From these objects, the formula is
implicitly represented by the set of its clauses (as there is only one input formula).
Reasonable data structures for the other objects are given here.

Clauses. The most important elements of the clause structure are the original or
generic literals and the list of clause copies used in the proof. Since clauses may be
entered at any subgoal, it is not necessary to compute contrapositives.

Generic Literals

Clause List of clause

V | Number | ... | P(z),=Q(y),-.-| --- copies

Clause copies. In every extension step, a renamed copy of the original clause has
to be made and added to the tableau.
Subgoals Predecessor

Vclsgl,. .., sgnl] ... |Clause] ... | Path

Subgoals. Subgoal objects contain the information about the literal they represent,
i.e. the sign, predicate symbol, the argument terms, etc.

Predicate | Argument | Exten- | Clause Select-

Sg Sign Symbol Terms sion Copy Links | ion Tag

As a matter of fact, additional control information can be included in these data
objects, which is omitted here for the sake of clarity. Further important data struc-
tures utilized in the proof process are the variable trail (which was described in
Section 7.1.3) and the list of subgoals. The variable trail is one of the few con-
cepts adopted from the Prolog technology architecture, since a device for manual
bookkeeping of the variable instantiations is required.

Global subgoal list. This is the central global data object. It consists of the se-
quence of subgoals of all clause copies hitherto introduced to the current tableau.
Figure 27 illustrates how the subgoals of the clause copies constitute the global
subgoal list. The dotted lines refer to the underlying tree structure, the dashed
arrows indicate the linking between the elements of the global subgoal list. In any
inference step, the literal at which an extension or reduction step is performed, is
marked as selected, as illustrated in Figure 27 by a grey shading of the subgoals.

The global access to the list of subgoals relieves us from the need to conform to
some sort of depth-first search. Instead, a subgoal selection function can be em-

2088 REINHOLD LETZ AND GERNOT STENZ

- e —

Figure 27: The global subgoal list and the implied tableau structure.

ployed that chooses an arbitrary subgoal for the next inference step. This way, new
heuristics become feasible that operate globally on the proof object. For example,
free subgoal reordering can be performed easily.

In Figure 28, a detailed snapshot of the subgoal and clause copy data structures
of a certain proof state is shown. The tableau structure is only given implicitly. In
fact, all information needed to move through the tableau, as, for instance, during a
folding up operation, is provided by extensive cross-referencing among the different
data objects. The figure shows the connections between data objects of the various
kinds (data objects for original clauses are not contained in the tableau). Again,
selected subgoals are highlighted by grey shading. The subgoal p has been chosen
for an extension step with the clause C = {r,—p,q}. A copy C' of C is linked to p
via the extension pointer. The subgoals of C' are accessible via the subgoal vector
pointed to by C'. This subgoal vector is appended to the global subgoal list. To
allow upward movement through the tableau, the copy is linked to the extended
subgoal, while the new subgoals are linked to the clause copy. The subgoals p and
—-p are immediately marked as selected, the subgoal ¢ becomes selected in the
next extension step. It should be noted that, since we rely on clauses instead of
contrapositives, the connected literal need not be the first literal in the clause, as
is the case here.

7.5.2. The proof procedure

Table 4 shows a simplified data oriented proof procedure (not featuring the reduc-
tion rule or start clause selection). Based on the connection graph of the input
formula, the list of associated links is attached to each subgoal. The procedure

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES

procedure solve(sg, links, resource)
if (links # () then
extension(sg, first(links), resource);
/* try next alternative */
solve(sg, rest(links), resource);
endif;

procedure extension(sg, link, resource)
dec_resource := decrement_resource(resource);
if (dec_resource > 0) then
clause := new_clause_copy(link);
head := head(clause, link);
trail_pos := trailmarker,
if (unify_literals(~sg, head)) then
old_subgoals := subgoals;
make_new_subgoals(clause, sg, head);
new-sg .= select_subgoal;
if (new-sg)
new.links := links(new_sg);
new._resource := resource(new_sg);
solve(new_sg, new links, new_resource);
else
proof_found;
abort;
endif;
/* backtracking */
unbind(trailpos);
subgoals := old_subgoals;
endif;
endif;

Table 4: A rudimentary model elimination proof procedure.

2089

2090 REINHOLD LETZ AND GERNOT STENZ

Subgoal
Exten-
sgl+irl ... sign | ---
Clause Copy\
Subgoal]
Ve }cgtor ... |Path
Subgoal
Vector
Previous Subgoal Vector of Next Subgoal Vector of

Global Subgoal List = 1581|562 |83 *T™ Gilobal Subgoal List

Subgoal
sg|+la] .. | oo Copy| - --
N—
Subgoal
Exten-
sg|—|p| --- | =en |Copy
Subgoal
Exten-
sgl+ 7] --.] sion Copé'

Figure 28: Cross-referencing between clause copy and subgoal data structures.

solve explores the search space by successively applying the extension rule using
the elements in the link list of its subgoal argument sg. The reduction rule can be
incorporated easily as an additional inferential alternative. The procedure extension
checks the resource bound, adds the linked clause to the proof tree, and modifies
the global subgoal list. When a literal can be selected, solve is called again with the
new subgoals, otherwise a proof has been found and the procedure aborts.

7.5.3. Reuse of clause instances

How can high performance be achieved with such an architecture? It turns out that
the most time consuming procedure in this approach is the generation of a new
instance of an input clause, which has to be performed in every extension step. One
of the main reasons for the high performance of the PTTP based model elimination
procedures is that this operation is implemented very efficiently. But the question
is, whether it is really necessary to generate a new clause instance in every extension
step. Typically, proof search procedures based on model elimination process rela-
tively small tableaux, but a large number of them. That is, in model elimination

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2091

theorem proving, the degree of backtracking is extremely high if compared with
typical Prolog applications. Many Prolog executions require deep deduction trees
including optimizations like tail recursion. For those applications, a new generation
of clause instances is indispensable. This striking difference between the deduction
trees considered in Prolog and in theorem proving shows that central ingredients
of Prolog technology will rarely be needed in theorem proving.

[{P(x).-Qw)} [¢ | [{P(z),-Q()} l;l

next available copy—= { P(z"), -Q(v')} {P(a),~Q(b)}
next available copy=—

(a) (b)

| {P(2),~Q(x)} I;I | {P(x),~Q(¥)} |§|

{P(a), ~Q(b)} {P(a), ~Q(b)}
{P(c),-Q(d)} | next available copy—=>f P(z"), ~Q(y"}}

next. available copy=

() (d)

Figure 29: Clause instance creation and availability during backtracking

The key idea for achieving high performance when clause copying is time con-
suming is the reuse of clause instances. The clause copies created once are not
discarded when backtracking but are kept in a list of available copies for later
reuse, as illustrated with the example in Figure 29. At startup (subfigure (a)), one
uninstantiated copy is provided for each clause. This copy is used in an extension
step and instantiated, as shown in subfigure (b). Now no other copy is available.
When the clause is selected for an extension step again, a new copy has to be cre-
ated. This situation is shown in subfigure (c). When backtracking occurs during
the search process and the extension step that initiated the creation of the copy in
subfigure (c) is undone, the copy remains in the list of clause copies and only the
pointer to the next available copy is moved backward. This situation is displayed
in subfigure (d). This way, over the duration of the proof, a monotonically growing
list of clause copies is built and in most cases clause copies can be reused instead
of having to be created. As a matter of fact, this requires that all variable bindings
are retracted. However, when using destructive unification and the trail concept
this can be done very efficiently. Experimental results have shown that with such
an architecture inference rates may be obtained that are comparable to the ones
achieved with PTTP implementations.

2092 REINHOLD LETZ AND GERNOT STENZ

7.6. Ezisting Model Elimination Implementations

Model Elimination

Proof Procedures
PTTP Data Oriented Implementation
/ \ Scheme-SETHEO
Compiling Prolog
/ \ Protein
PTTP '92

native virtual KoMeT
PTTP'88 SETHEQ ProCom

METEOR

Figure 30: An overview of the architectures of model elimination systems.

In Figure 30, existing implementations of model elimination are classified ac-
cording to the descriptions given in this section. The references for the listed
systems are: PTTP '88 [Stickel 1988], SETHEO [Letz et al. 1992], METEOR
[Astrachan and Loveland 1991], Protein [Baumgartner and Furbach 1994], PTTP '92
[Stickel 1992], KoMeT [Bibel, Bruening, Egly and Rath 1994], ProCom [Neugebauer
and Petermann 1995, Neugebauer 1995], Scheme-SETHEO (see Section 7.5).

8. Implementation of Refinements by Constraints

When considering the presented tableau refinements such as regularity, tautology,
or subsumption-freeness, the question may be raised whether it is possible with
reasonable effort to check these conditions after each inference step. Note that a
unification operation in one part of a tableau can produce instantiations which may
lead to an irregularity, tautology, or subsumed clause in another distant part of the
tableau. The structure violation can even concern a closed part of the tableau.
Fortunately, there exists a uniform and highly efficient technique for implement-
ing many of the search pruning mechanisms presented in the previous sections:
Syntactic disequation constraints.

8.1. Reformulation of Refinements as Constraints

8.1.1. Tautology elimination

Let us demonstrate the technique first using an example of dynamic tautology
elimination. Recall that certain input clauses may have tautological instances,
which can be avoided as tableau clauses. When considering the transitivity clause

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2093

-P(z,y)V-P(y, z)V P(z,2z), there are two classes of instantiations which may ren-
der the formula tautological. Either z and y are instantiated to the same term, or
y and z. Obviously, the generation of a tautological instance can be avoided if the
unification operation is constrained by forbidding that the respective variables are
instantiated to the same terms. In general, this leads to the formulation of disequa-
tion constraints of the form sy,...,8, # t1,...,t, Where the s; and t; are terms.
Alternatively, one could formulate this instantiation prohibition as a disjunction
s1#t1 V.-V 8y #t,. A disequation constraint is violated if every pair (s;, ;) in
the constraint is instantiated to the same term. For the transitivity clause, the two
disequation constraints z # y and y # z can be generated and added to the transi-
tivity formula. The non-tautology constraints for the formulae of a given input set
can be generated in a preprocessing phase before starting the actual proof process.
Afterwards, the tableau construction is performed with constrained clauses. When-
ever a constrained clause is to be used for tableau expansion, the formula and its
constraints are consistently renamed, the tableau expansion is performed with the
clause part, and the constraints are added. If the constraints are violated, then a
tautological tableau clause has been generated, in which case one can immediately
perform backtracking.

8.1.2. Regularity

Regularity can also be captured using disequation constraints. In contrast to non-
tautology constraints, however, regularity constraints have to be generated dynami-
cally during the proof search. Whenever a new renamed variant c of a (constrained)
clause is attached to a branch in an extension step, then, for every literal L with

argument sequence si,..., S, in the clause ¢ and for every branch literal with the
same sign and predicate symbol with arguments ¢, ..., t,, a disequation constraint
81,.++,8n #t1,...,1, must be generated.

8.1.3. Tableau clause subsumption

Tableau clause subsumption is essentially treated in the same manner as tautology
elimination. Recall the example from Section 3.3 where in addition to the tran-
sitivity clause a unit clause P(a,b) is assumed to be in the input set. Then, the
disequation constraint z,z # a,b may be generated and added to the transitivity
clause. Like non-tautology constraints, non-subsumption constraints can be com-
puted and added to the formulae in the input set before the actual proof process is
started.!5 Please note that this mechanism does not capture certain cases of tableau
clause subsumption, as demonstrated with the following example. Assume that the
transitivity clause and a unit clause P(f(v),g(v)) are contained in the input set.
In analogy to the other example, a disequation constraint z,z # f(v), g(v) could
be added to the transitivity formula. But now the constraint contains the variable
v, which does not occur in the transitivity clause. Since clauses (and their con-

18Note, however, that due to the NP-completeness of subsumption, it might be advisable not
to generate all possible non-subsumption constraints, since this could involve an exponentially
increasing preprocessing time.

2094 REINHOLD LETZ AND GERNOT STENZ

straints) are always renamed before being integrated into a tableau, the renaming
of the variable v will occur in the constraint only and nowhere else in the tableau.
Consequently, this variable can never be instantiated by tableau inference steps,
so that the constraint can never be violated and is therefore absolutely useless for
search pruning. Clearly, the case of full subsumption cannot be captured in this
manner. The constraint mechanism should prevent z and z from being instanti-
ated to any terms which have the structures f(t) and g(t), respectively, regard-
less what ¢ is. This can be conveniently achieved by using universal variables in
addition to the rigid variables. The respective disequation constraint then reads
Vv z,z # f(v), g(v), which is violated exactly when z and z are instantiated to any
terms of the structures f(s) and g(t) with s =¢.

More general disunification problems are discussed in [Comon and Lescanne
1989].

8.2. Disequation Constraints

After this explanation of the potential of constraints, we will now more rigorously
present the framework of disequation constraints, with respect to their use in prun-
ing the proof search in model elimination.

8.1. DEFINITION (Disequation constraint). A disequation constraint C is either true
or of the form Vu; -+ Vus, I # r (m > 0) with [and r being sequences of terms
81,---,8p and ty,...,t, (n > 0), respectively. For any disequation constraint C of
the latter form, [# r is called the kernel of C, n its length, ui,...,u, its universal
variables, and the disequation constraints s; # t; are termed the subconstraints of
C. Occasionally, we will use the disjunctive form of a disequation constraint kernel,
which is sy # &, V-V sy # tp.

An example of a disequation constraint of length » = 1 and with one universal
variable is

Vz f(g(a:,a, f(y)),'U) # f(g(z,z, _f(Z)),’U).

Since all considered constraints will be disequation constraints, we will simply speak
of constraints in the sequel. Next, we will discuss the meaning of constraint viola-
tion.

8.2. DEFINITION (Constraint violation, equivalence). No substitution violates the
constraint true. A substitution o violates a constraint of the form Vu, « - -Yug, L #
if there is a substitution 7 with domain u,,...,us, such that lrec = rro. When a
violating substitution exists for a certain constraint, we say that the constraint can
be violated; a constraint is violated, if all substitutions violate it. Two constraints
are equivalent if they have the same set of violating substitutions.

For example, the substitution ¢ = {z/f(a)} violates the constraint Yy z # f(y),
since z7o = f(y)7o for T = {y/a}.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2095

8.2.1. Constraint normalization

How may the violation of a constraint be detected in an efficient manner? The basic
characteristic of constraints permitting an efficient constraint handling is that these
constraints can often be simplified. For example, the complex constraint given after
Definition 8.1 is equivalent to the simpler constraint z,y # a,a, which obviously
can be handled more efficiently. Constraints can always be expressed in a specific
form.

8.3. DEFINITION (Constraint in solved form). A constraint is in solved form if it is
either true or if its kernel has the form z;,...,z, # t1,...,t, where all variables
on the left-hand side are pairwise distinct and non-universal (i.e., do not occur in
the quantifier prefix of the constraint), and no variable z; occurs in terms of the
right-hand side.

For example, the constraint z,y # a,a is in solved form whereas the equivalent
constraint z,y # y, a is not. Every constraint can be rewritten into solved form by
using the following nondeterministic algorithm.

8.4. DEFINITION (Constraint normalization). Let C be any disequation constraint
as input. If the constraint is true or if the two sides [and r of its kernel are not
unifiable, then the constraint true is a normal form of C. Otherwise, let ¢ be
any minimal unifier for ! and r that contains no binding of the form z/u where
u is a universal variable of C and z is not. Let {z1/t1,...,%,/tn} be the set of
all bindings in o with the z; being non-universal in C, and let u;,...,u, be the
universal variables in C that occur in some of the terms ¢;. Then the constraint
Vuy -+ YUy, T1,-..,Tn # t1,...,tn 18 @ normal form of C.

Note that, for preserving constraint equivalence and for achieving a solved form,
the use of a minimal unifier is needed in the procedure, employing merely most
general unifiers will not always work. Consider, for example, the constraint f(y) # =
and the most general unifier {z/f(z),y/z}. This would yield the constraint z,y #
f(z),z as a normal form, which is not equivalent to f(y) # z and which cannot
even be violated.

Let us demonstrate the effect of the normalization procedure by applying it to
the complex constraint Vz f(g(z,a, f(v)),v) # f(g(z, 2, f(2)),v) mentioned above.
First, we obtain the minimal unifier {z/a,z/a,y/a}. Next, the binding z/a is
deleted, since z is universal, which eventually yields the normal form constraint
z,y # a,a. As shown with this example, some constraint variables may vanish in
the normalization process. On the other hand, the length of a constraint may also
increase during normalization.

8.5. PROPOSITION. Any normal form of a constraint C is in solved form and
equivalent to C.

PROOF. If C is true or if the two sides of its kernel are not unifiable, then the
normal form of C is true, which is in solved form and equivalent to C. It remains

2096 REINHOLD LETZ AND GERNOT STENZ

to consider the case of a constraint C = Yu; - - uy, | # r with unifiable ! and r.
When normalizing C according to the procedure in Definition 8.4, first, a minimal
unifier o for ! and r is computed which does not bind non-universal variables to
universal ones. The kernel I # ' of the corresponding normal form C’ of C contains
exactly the subconstraints z; # ¢; for every binding z;/t; € o with non-universal
z;. Since minimal unifiers are idempotent, no variable in the domain of ¢ occurs in
terms of its range. Therefore, C’ is in solved form. For considering the equivalence
of C and C', first note the following. Since o is a minimal unifier for [and r, it is
idempotent and more general than any unifier for and r. Therefore, a substitution
p unifies [and r if and only if vp = sp for every binding v/s € o. Let now 8 be any
substitution.

Case 1. If 6 violates C, then there exists a substitution 7 with domain
{u1,...,um} and It = r716. Therefore, for any binding v/s € o, v = s76,
i.e., 78 is a unifier for I’ and r'. Let 7' be the set of bindings in 7 with domain
variables occurring in C'. Then 7'6 unifies I’ and r'. Consequently, § violates C'.

Case 2. If 6 violates C’, then there exists a substitution 7 with its domain being
the universal variables in C' and I'76 = r'r6. Let o' be the set of bindings in ¢
which bind universal variables. Then, for any binding v/s € o, vo'70 = so'76, and
hence ¢'78 unifies ! and r. Since o' is a substitution with domain {uy,...,un}, 8
violates C. O

8.3. Implementing Disequation Constraints

We will discuss now how the constraint handling can be efficiently integrated into
a model elimination proof search procedure. First, we consider the problem of gen-
erating constraints in normal form.

8.3.1. Efficient constraint generation

Unification is a basic ingredient of the normalization procedure mentioned above.
In the successful implementations of model elimination, a destructive variant of
the unification procedure specified in Table 2 is used. If slightly extended, this
procedure can also be used for an efficient constraint generation. First, universal
variables must be distinguished from non-universal ones. The best way to do this is
to extend the internal data structure for variables with an additional cell where it
is noted whether the variable is universal or not. The advantage of this approach is
that the type of a variable may change during the proof process which nicely goes
together with the feature of local variables mentioned in Section 5.4.1. Then, the
mentioned unification operation must be modified in order to prevent the binding of
a non-universal variable to a universal one. After these modifications, the generation
and normalization of a constraint can be implemented efficiently by simply using
the new unification procedure, as follows.

8.6. DEFINITION (Constraint generation). Given any two sequences ! and r of
terms that must not become equal by instantiation.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2097

1. Destructively unify [and r and push the substituted variables onto the trail.
2. Collect the respective bindings of the non-universal variables only.
3. Finally undo the unification.
After these operations the term sequences [and r are in their original form, and
the collected bindings represent the desired disequation constraint in normal form.

8.3.2. Efficient constraint propagation
During proof search with disequation constraints, every tableau is accompanied by a
set of constraints. When an inference step is performed, it produces a substitution
which is applied to the tableau. In order to achieve an optimal pruning of the
search space, it should be checked after each inference step whether the computed
substitution violates one of the constraints of the tableau. If so, the respective
inference step can be retracted and we call this a constraint failure. If not, the
substitution o has to be propagated to the constraints, i.e., every constraint C has
to be replaced by Co before the next inference step is being executed. As a matter
of fact, if some of the new constraints can no longer be violated, they should be
ignored for the further proof attempt. This is important for reducing the search
effort, since normally, a wealth of constraints will be generated during proof search.
If the constraints are always kept in normal form, then the mentioned opera-
tions can be performed quite efficiently. Assume, for example, that a substitution
o = {z/a} is applied to the current tableau. Then it is obvious that all constraints
in which z does not occur on the left-hand side may be ignored. In case no con-
straint of the current tableau is violated by the substitution o, a new constraint Co
has to be created and afterwards normalized for every constraint C containing = on
the left-hand side, which is still a considerable effort. In order to do this efficiently,
new constraints should not be generated explicitly, but the old constraints should
be reused and modified appropriately. For this purpose, it is more comfortable to
keep the constraints in disjunctive form. Then, for any such constraint C, only the
respective subconstraint (z # t)o needs to be normalized to, say C’, and the for-
mer subconstraint z # ¢t in C can be replaced with the subconstraints of C’. This
operation may also change the actual length of the former constraint. In summary,
this results in the following procedure for constraint propagation.

8.7. DEFINITION (Constraint propagation). All constraints are assumed to be nor-
malized and in disjunctive form. Suppose a substitution ¢ = {z1/s1,...,Zn/Sn}
is performed during the tableau construction. Then, for every subconstraint C; =
zift; (ie., with z; in the domain of o) of every constraint C, successively com-
pute the normal form C; of s; # t;o with length, say k, and perform the following
operations:

1. If C} = true, ignore C for the rest of the proof attempt (it cannot be violated),

2. If k = 0, decrement the actual length of C by 1; if the actual length 0 is reached,

perform backtracking (the constraint is violated),

3. Otherwise replace C; with C! and modify the actual length of C by adding
k-1.

2098 REINHOLD LETZ AND GERNOT STENZ

In order to guarantee efficiency, all modifications performed on the constraints
have to be stored intermediately and undone on backtracking.

8.3.8. Internal representation of constraints
Obviously, a prerequisite for the efficiency of the constraint handling is a suitable
internal representation of the constraints. When analyzing the described constraint
handling algorithms, such a representation has to meet the following requirements.
1. After the instantiation of any variable z, a quick access to all subconstraints of
the form z # ¢ is needed.
2. If a subconstraint C, of a constraint C is violated, it must be easy to check
whether C is violated without considering the other subconstraints of C.
3. Whenever a subconstraint C; of a constraint C normalizes to true, then it must
be easy to deactivate C and all other subconstraints of C.

niljz1 1 rﬁl;n

-y
27 previous
{ subconstraint |

- e
/’ previous \\
| subconstraint)

constraint 1st sub- nth sub-
. of z . of /
header constraint S~~~ constraint S L.
I : I active I
81 Sn
Figure 31: Internal representation of a constraint z1,...,Tn # S1,-+-,5n.

This can be achieved by using a data structure as displayed in Figure 31. In
order to have immediate access from a variable z to all subconstraints of the form
T # t, it is reasonable to maintain a list of the subconstraints corresponding to each
variable. The best solution is to extend the data structure of a variable by a pointer
to the last element in its subconstraint list. From this subconstraint the previous
subconstraint of the variable z can be accessed, and so forth. (The aforementioned
tag which expresses whether a variable is universal or not is omitted in the figure.)

A constraint itself is separated into a constraint header and its subconstraints.
The header contains the actual length of the constraint and a tag whether the
constraint is already true or whether it can still be violated (active). From each
subconstraint there is a pointer to the respective constraint header. Now if a sub-
constraint is violated, then the length counter in the header is decremented by 1.
If, on the other hand, a subconstraint normalizes to true, then the tag in the header
is set to true. Because of the shared data structure, both modifications are immedi-
ately visible and can be used from all other subconstraints of the constraint. Please
note that an explicit access from a constraint header to its subconstraints is not
needed.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2099

Fledef Dol fritfwoil
(a)

a

nilI:: ' flede nillv rﬂ niljw Inil
Constraint stack
b - }
1 Jactive| { | 1,0 [nil g {
(b)
z]e nil wl,

Constraint stack

RTINS

2 activel 3

()
Figure 32: The constraint stack.

It is comfortable to reserve a special part of the memory for the representation
of constraints, which we call the constraint stack. In order to understand the mod-
ifications of the constraint stack during the proof process for the case of a more
complex normalization operation, consult Figure 32. Assume we are given a tableau
with subgoals P(z) and —=Q(z) and a predecessor literal P(f(v,w)). Assume that
no constraints for the variables z, v and w exist (a). Now, a regularity constraint
z # f(v,w) may be generated, which requires that a constraint header and a sub-
constraint are pushed onto the constraint stack (b). Assume that afterwards an
extension step is performed at the subgoal ~Q(z) with an entry literal Q(f(a,b)).
The unifier 0 = {z/f(a,b)} has to be propagated to the constraints. This is done
by pushing the two new subconstraints v # a and w # b onto the constraint stack,
which were obtained after normalization. Furthermore, the subconstraint lists of v
and w have to be extended. Finally, the counter in the constraint header has to be
incremented by 1. Note that nothing has to be done about the old subconstraint
z # f(v,w). Since the variable z has been bound, the old subconstraint will simply
be ignored by all subsequent constraint checks.

2100 REINHOLD LETZ AND GERNOT STENZ

8.8.4. Constraint backtracking
The entire mechanism of constraint generation and propagation has to be em-
bedded into the backtracking driven proof search procedure of model elimination.
Accordingly, also all modifications performed on the constraint stack and in the
subconstraint lists of the variables have to be properly undone when an inference
step is retracted. For this purpose, after each inference step and the corresponding
modifications in the constraint area, one has to remember the following data.
1. The old length values in the affected constraint headers,
2. the old values (active or true) in the second cells of the affected constraint
headers, and
3. the old pointers to the previous subconstraints in the affected variables and
subconstraints.

This is exactly the information that has to be stored for backtracking. A com-
fortable method for doing this would be the use of a constraint trail similar to
the variable trail, except that here also the old values need to be stored while the
variable trail only has to contain the list of bound variables. Additionally, in order
to permit the reuse of the constraint stack, one has to remember the top of the
constraint stack before each sequence of constraint modifications.

8.3.5. Disequation constraints in Prolog

Some Prolog implementations offer the possibility of formulating disequation con-
straints. As an example, we consider the Prolog system Eclipse [Wallace and
Veron 1993]. Here, using the infix predicate "= one can formulate syntactic dise-
quation constraints. This permits that constraints resulting from structural tableau
conditions can be easily implemented. We describe the method for regularity con-
straints on the first contrapositive of the transitivity clause

p-p(X,Z, P,N) :- N1 = [p(X,Z2) | N], p_p(X,Y, P,N1), p_p(Y,Z, P,N1).

taken from the Prolog example in Section 7.4. We show how regularity can be in-
tegrated by modifying the clause as follows.

p-p(X,Z, P,N) :- N1 = [p(X,Z) | N],
not_member(p(X,Z), P),
not_member (p(X,Y), N1),
not_member(p(Y,2), N1),
p_p(X,Y, P,N1), p_p(Y,Z, P,N1).

where not_member is defined as:

not_member(_,[1).
not_member (E, [FIR]) :- E "= F, not_member(E,R).

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2101

With similar methods an easy integration of tautology and subsumption con-
straints can be achieved. However, when it comes to the integration of more sophis-
ticated constraints such as the ones considered next, it turns out that an efficient
Prolog implementation is very difficult to obtain.

8.4. Constraints for Global Pruning Methods

8.4.1. Improving the matings pruning with constraints

In Section 4.1, a method was described which can guarantee that certain permu-
tations of matings are not generated more than once. The idea was to impose an
ordering on the literals in the input formula, which is inherited to the tableau nodes.
Now, a reduction step from a subgoal N to an ancestor node N' may be avoided
if the entry node N" immediately below N’ is smaller than N in the ordering. In
fact, this method can alsc be implemented and even improved by using disequation
constraints, as follows. The prohibition to perform a reduction step on N using N’
may be reexpressed as a disequation constraint I # r where ! and r are the argu-
ment sequences of the literals at N and N', respectively. Such a constraint does
prune not only the respective reduction step, but all tableaux in which the literals
at N and N" become equal by instantiation. In [Letz 1998b] it is proven that this
extension of the matings pruning preserves completeness, the main reason being
that the matings pruning is compatible with regularity.

8.4.2. Failure caching using constraints

The failure caching mechanism described in' Section 4.3 can also be implemented
using disequation constraints. Briefly, the method requires that when a subgoal N
is solved with a solution substitution ¢ on the variables of the respective path and
the remaining subgoals cannot be solved with this substitution, then o is turned
into a failure substitution as defined in Section 4.3 and, for any alternative solution
substitution 7 for IV, 0 must not be more general than 7.

8.8. DEFINITION (Constraint of a failure substitution). Let o0 = {z1/t1,...,Zn/tn}
be a failure substitution generated at a subgoal N and V the set of variables on
the path with leaf N in the last tableau in which the subgoal N was selected for an
inference step. The constraint of the failure substitution o is the normal form of the
constraint Yu; ---VYum, z1,...,Zn # t1,...,tn where uj,...,u,, are the variables
occurring in terms of o that are not in V.

It is straightforward to recognize that a failure substitution o of a tableau node NV
is more general than a solution substitution 7 of NV if and only if the constraint of the
failure substitution o is violated by 7. Consequently, the constraint handling mech-
anism can be used to implement failure caching. In order to adequately implement
failure caching by using constraints, the use of universal variables is also necessary,
such as for the case of tableau clause subsumption (Section 8.1.3). This can be seen
by considering, for example, a subgoal N with failure substitution o = {z/f(2,2)}

2102 REINHOLD LETZ AND GERNOT STENZ

where z is a variable not occurring in the set V. The constraint of o is Vz z # f(z, 2).
When N can be solved with a solution substitution r = {z/f(a, a)}, then o is more
general than 7 and, in fact, the constraint Vz z # f(z, z) is violated by 7. Obviously,
it is impossible to capture such a case without universal variables.

8.4.3. Centralized management of constraints

It is apparent that structural constraints resulting from different sources, tautol-
ogy, regularity, subsumption, or matings, need not be distinguished in the tableau
construction. Furthermore, in general, the constraints need not even be tied to the
respective tableau clauses, but the constraint information can be kept separate in
a special constraint storage space. This also fits in with the method of forgetting
closed parts of a tableau and working with subgoal trees instead, because all rel-
evant structure information of the solved part of the tableau is contained in the
constraints. However, when structural constraints are used in combination with
constraints resulting from failure substitutions, constraints have to be deactivated
in certain states of the proof process, as shown in Section 4.3. In this case, it is nec-
essary to take the tableau positions into account at which the respective constraints
were generated.

9. Experimental Results

In the previous sections we introduced numerous refinements of model elimination.
But, as we are also discussing implementation techniques in this text, knowing about
the soundness and completeness of these refinements is not sufficient, it is also of
vital importance to know how all these refinements behave when implemented and
applied in practice. This section presents a number of experimental results to give
an idea of the actual performance of model elimination refinements.

9.1. Test Problem Set and Ezperimental Environment

All our experiments were conducted in a uniform manner on a subset of the TPTP
problem library [Sutcliffe et al. 1994] (version 2.2.1). Starting with the entire set of
4004 TPTP problems, we eliminated all non-clausal problems, all satisfiable prob-
lems and all unit equality and pure equality problems. Of the remaining problem
set, we selected those problems which at least one of the model elimination search
strategies in use with our current e-SETHEO system could solve within 300 seconds.
This selection process left us with a test set of 1057 problems. One experiment has
been restricted to the test problems containing equality predicates, 431 of which
were in our test set.

All experiments were conducted on a Sun Ultra-60 workstation. Each strategy
was run on each problem with a time resource of 300 seconds.

Finally, it should be noted that the success of all possible enhancements of model
elimination procedures depends on a diligent implementation of the same. The

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2103

additional effort induced by a bad implementation can more than nullify the gains
of a potentially successful technique.

We have tested the most important refinements of model elimination, the results
of these tests can be found in the following sections.

9.2. Regularity

The concept of regularity, as introduced in Section 3.1, is one of the most successful
single improvement techniques, as can readily be seen in Figure 33. We compared
two strategies using simple iterative deepening without further refinements, one
with regularity constraints and one without.

700
gel
IS4
=
o)
w
g 600 -
=
°
S
—
~
with regularity
without regularity
500 T T T

0 50 100 150 200 250 300
Time in seconds

Figure 33: Performance of the depth bound without ‘and with regularity.

9.3. Completeness Bounds

As detailed in Section 2.5, different completeness bounds may be used by the model
elimination procedure. We have compared the depth bound, the weighted depth
bound and the inference bound. The results of our experiments, however, were
ambiguous. In Figure 34, we can see the results on the entire test set.

It is apparent from that figure that the depth bound is the most successful strat-
egy if no knowledge about the problem is available. Yet, distinguishing problems
according to some very basic criteria can yield a dlﬁerent picture.

2104 REINHOLD LETZ AND GERNOT STENZ

700
~
D
=
@
E 600 -
=
=
IS
=
A depth bound
- weighted depth bound
inference bound
500 T T

0 50 100 150 200 250 300
Time in scconds

Figure 34: Entire problem set: performance of various completeness bounds with
regularity.

Figure 35 depicts the test results for Horn problems only. Here, the weighted
depth bound is more successful than the depth bound. A similar result is obtained
when restricting the experiments to problems containing the equality predicate,
as shown in Figure 36, where we omitted the generally least successful inference
bound.

9.4. Relevance Information

As explained in Section 3.5, the use of relevance information can significantly re-
duce the search space by limiting the number of possible start clauses. The TPTP
library {Sutcliffe et al. 1994] provides such relevance information by introducing in-
put clause types. When relevance information is used, only conjecture type clauses
are selected as start clauses, whereas in the standard case all negative clauses are
potential start clauses.

The result of a comparison between proving with and without relevance infor-
mation can be seen in Figure 37. As expected, better results are obtained with the
use of relevance information.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2105

600
o
Qo
=
2
(@ 500 -
5 |
B
2
~ weighted depth bound
depth bound
inference bound
400 T

0 50 100 150 200 250 300
Time in scconds

Figure 35: Horn problems: performance of various completeness bounds with regu-
larity.

200 — _
ge!
g
'6 /‘—/—’/—’—/'
w
w
E) weighted depth bound
)
= depth bound
R~
100 T

0 50 100 150 200 250 300
Time in seconds

Figure 36: Equality problems: performance of various depth bounds with regularity.

9.5. Failure Caching

The technique of failure caching as described in Section 4.3 has been implemented
in SETHEO with the use of constraints, as described in Section 8.4.2. As becomes

apparent from Figure 38, the use of this technique has a considerable influence on
the test results.

2106 REINHOLD LETZ AND GERNOT STENZ

700

~

L

=

]

"

wi

g .

< relevance info

6

£ no relevance info
600 T ™

0 50 100 150 200 250 300
Time in seconds

Figure 37: The effect of the use of relevance information (with weighted depth
bound and regularity).

800
o
154
>
S
wn
E 700 -
=
i)
o
S
A
failure caching
no failure caching
600 T T

0 50 100 150 200 250 300
Time in seconds

Figure 38: The effect of failure caching (with weighted depth bound and regularity).

9.6. Folding Up

Introduced in Section 5.2, the folding up technique has also been implemented as a
model elimination refinement in SETHEO and has turned out to be very successful.
Figure 39 shows three curves: The lowest curve indicates the proofs found with the
use of regularity only, while the middle curve gives the number of proofs using
regularity and folding up. Finally, the curve with the highest number of proofs
shows the result of combining folding up with the full use of constraints (enabling
both regularity and failure caching).

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2107

800
B
R
o)
1]
E 700 -
2
=
2
~
fold up plus constraints
fold up plus regularity
regularity only
600 T

0 50 100 150 200 250 300
Time in seconds

Figure 39: Enhancements through the use of the folding up technique and failure
caching (with weighted depth bound).

9.7. Dynamic Subgoal Reordering

The concept of subgoal reordering was introduced in Section 2.6.1. As can be seen
in Figure 40, even a local (this means only within the selected clause) subgoal
selection according to the fewest solution principle can have a positive effect.

9.8. Summary

The experimental results presented in this section show that the refinements de-
scribed in this chapter are applicable in automated theorem proving and that they
may also be combined in several ways to accumulate the gains of the individual
refinements. Among all these refinements, regularity and failure caching stand out
in particular as being the most important and successful ones.

10. Outlook

The model elimination or connection tableau approach is an efficient and successful
paradigm in automated deduction. There are, however, a number of deficiencies,
which have to be addressed in the future. One of the fundamental weaknesses of
connection tableaux is the handling of equality. The naive approach to simply add
the congruence axioms of equality, suffers from the weakness that equality specific

2108 REINHOLD LETZ AND GERNOT STENZ

750
e
4
~
2
E 700 1
=
o)
<)
et
a®y
subgoal reordering
no reordering
650 T

0 50 100 150 200 250 300
Time in seconds

Figure 40: Performance of the weighted depth bound with constraints, with and
without dynamic subgoal reordering.

redundancy elimination techniques are ignored. The most successful paradigm for
treating equality in saturation-based theorem proving, ordered paramodulation, is
not compatible with connection tableaux. There have been attempts to integrate
lazy paramodulation, a variant of paramodulation without orderings which is com-
patible with model elimination. This method is typically implemented by means of a
transformation (like Brand’s modification method [Brand 1975]), which eliminates
the equality axioms and compiles certain equality inferences into the formula. A
certain search space pruning might be obtained by using limited ordering conditions
[Bachmair, Ganzinger and Voronkov 1998], preferably implemented as ordering con-
straints. This would fit well with the constraint technology applicable in connection
tableaux.

Another, more general weakness of the search procedure is that it typically per-
forms poorly on formulae with relatively long proofs. On the one hand, this has
directly to do with the methodology of iterative-deepening search. On the other
hand, when proofs are becoming longer, the goal-orientedness loses its reductive
power. To prove difficult formulae in one big leap by reasoning backwards from the
conjecture is very difficult. An interesting perspective here is the use of lemmata,
intermediate results typically deduced in a forward manner from the axioms. Some
progress has been made in this direction by the development of powerful filtering
techniques.

A further interesting line of research could be the use of pruning methods based
on semantic information. One could, for example, use small models of the axioms

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2109

in order to detect the unsolvability of certain subgoals. Finally, the consideration of
a confluent and possibly even nondestructive integration of connection conditions
into the tableau framework definitely deserves attention.

Acknowledgments

We would like to thank Peter Baumgartner and Uwe Petermann for their valuable
comments on an earlier version of this chapter. Furthermore we want to thank
Herbert Stenz for his exceptionally thorough proofreading and Rajeev Goré for his
linguistic advice. This work was partially funded by the Deutsche Forschungsge-
meinschaft (DFG) as part of the Schwerpunktprogramm Deduktion and the Sonder-
forschungsbereich (SFB) 342.

Bibliography

AHO A. V., SETHI R. AND ULLMAN J. D. [1986], Compilers - Principles, Techniques, and Tools,
Addison-Wesley, Reading, MA.

AHO A. V. AND ULLMAN J. D. [1977], Principles of Compiler Design, Addison-Wesley, Reading,
MA. See also the widely expanded subsequent book [Aho, Sethi and Ullman 1986].

ANDREWS P. B. [1981], ‘“Theorem proving through general matings’, Journal of the ACM 28, 193~
214.

ASTRACHAN O. L. AND LovELAND D. W. [1991], METEORSs: High performance theorem provers
using model elimination, Technical Report DUKE-TR-1991-08, Department of Computer
Science, Duke University.

ASTRACHAN O. AND STICKEL M. [1992], Caching and Lemmaizing in Model Elimination Theorem
Provers, in D. Kapur, ed., ‘Proceedings, 11th International Conference on Automated Deduc-
tion (CADE-11), Saratoga Springs, NY, USA’, Vol. 607 of LNAI, Springer, Berlin, pp. 224 -
238.

BaAz M. AND LEITSCH A. [1992], ‘Complexity of resolution proofs and function introduction’,
Annals of Pure and Applied Logic 57(3), 181-215.

BACHMAIR L. AND GANZINGER H. [2001), Resolution theorem proving, in A. Robinson and A. Vo-
ronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science, chapter 2, pp. 19-
99.

BACHMAIR L., GANZINGER H. AND VORONKOV A. [1998], Elimination of Equality via Transfor-
mation with Ordering Constraints, in C. Kirchner and H. Kirchner, eds, ‘Proceedings, 15th
International Conference on Automated Deduction (CADE-15), Lindau, Germany’, Vol. 1421
of LNAI, Springer, Berlin, pp. 175-190.

BAUMGARTNER P. [1998], Hyper Tableau — The Next Generation, in H. de Swart, ed., ‘Pro-
ceedings of the International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX-98), Oisterwijk, The Netherlands’, Vol. 1397 of LNAI,
pp. 60-76.

BAUMGARTNER P. AND BRUNING S. [1997], ‘A Disjunctive Positive Refinement of Model Elim-
ination and its Application to Subsumption Deletion’, Journal of Automated Reasoning
19(2), 205-262.

BAUMGARTNER P., EISINGER N. AND FurBAcH U. [1999], A Confluent Connection Calculus, in
H. Ganzinger, ed., ‘Proceedings of the 16th International Conference on Automated Deduction
(CADE-16)’, Vol. 1632 of LNAI, Springer, Berlin, pp. 329-343.

2110 REINHOLD LETZ AND GERNOT STENZ

BAUMGARTNER P. AND FurBACH U. [1994], PROTEIN: A PROver with a Theory Extension
INterface, in A. Bundy, ed., ‘Proceedings of the 12th International Conference on Automated
Deduction (CADE-12)’, Vol. 814 of LNAI, Springer, Berlin, pp. 769-773.

BECKERT B. [1998], Integrating and Unifying Methods of Tableau-based Theorem Proving, PhD
thesis, University of Karlsruhe, Department of Computer Science.

BECKERT B. AND HAHNLE R. [1992], An Improved Method for Adding Equality to Free Vari-
able Semantic Tableaux, in D. Kapur, ed., ‘Proceedings, 11th International Conference on
Automated Deduction (CADE-11), Saratoga Springs, NY, USA’, LNCS 607, Springer, Berlin,
pp. 507-521.

BECKERT B. AND HAHNLE R. [1998], Analytic Tableaux, in W. Bibel and P. H. Schmitt, eds,
‘Automated Deduction — A Basis for Applications’, Vol. I: Foundations, Kluwer, Dordrecht,
pp- 11-41.

BENKER H., BEACCcO J. M., BEscos S., DOROCHEVSKY M., JEFFRE T., POHLMANN A., NoYE
J., POTERIE B., SEXTON A., SYRE J. C., THIBAULT O. AND WATZLAWIK G. [1989], KCM:
A Knowledge Crunching Machine, in M. Yoeli and G. Silberman, eds, ‘Proceedings of the
16th Annual International Symposium on Computer Architecture, Jerusalem, Israel’, IEEE
Computer Society Press, New York, pp. 186-194.

BIBEL W. [1987], Automated Theorem Proving, second revised edn, Vieweg, Braunschweig.

BiBEL W., BRUENING S., EGLy U. AND RATH T. [1994], KoMeT, in ‘Proceedings, 12th Interna-
tional Conference on Automated Deduction (CADE-12), Nancy, France’, Vol. 814 of LNAI,
Springer, Berlin, pp. 783-787.

BiLLON J.-P. [1996], The disconnection method: a confluent integration of unification in the
analytic framework, in P. Migliolo, U. Moscato, D. Mundici and M. Ornaghi, eds, ‘Proceedings
of the 5th International Workshop on Theorem Proving with Analytic Tableaux and Related
Methods (TABLEAUX)’, Vol. 1071 of LNAI, Springer, Berlin, pp. 110-126.

Boy DE LA Tour T. [1990], Minimizing the Number of Clauses by Renaming, in M. E. Stickel,
ed., ‘10th International Conference on Automated Deduction (CADE-10), Kaiserslautern, Ger-
many’, LNCS, Springer, Berlin, pp. 558-572.

BRAND D. [1975], ‘Proving Theorems with the Modification Method’, SIAM Journal on Com-
puting 4(4), 412-430.

CoMoN H. AND LESCANNE P. {1989], ‘Equational Problems and Disunification’, Journal of Sym-
bolic Computation 7(3-4), 371-425.

CORBIN J. AND BiporT M. [1983]), A Rehabilitation of Robinson’s Unification Algorithm, in
‘Information Processing’, North Holland, Amsterdam, pp. 909-914.

EDER E. [1984], An Implementation of a Theorem Prover Based on the Connection Method, in
W. Bibel and B. Petkoff, eds, ‘Proceedings of the International Conference on Artificial Intel-
ligence: Methodology, Systems and Applications (AIMSA), Varna, Bulgaria’, North Holland,
Amsterdam, pp. 121-128.

FiTTING M. C. [1990], First-Order Logic and Automated Theorem Proving, Springer, Berlin.

FITTING M. C. [1996], First-Order Logic and Automated Theorem Proving, second revised edn,
Springer, Berlin.

GENTZEN G. [1935], ‘Untersuchungen iiber das logische Schliefen’, Mathematische Zeitschrift
39, 176-210, 405—431. English translation in M. E. Szabo, editor, The Collected Papers of
Gerhard Gentzen, pages 68~131. North Holland, Amsterdam, 1969.

GOLLER C., LETZz R., MAYR K. AND SCHUMANN J. M. P. [1994], SETHEO V3.2: Recent devel-
opments, in A. Bundy, ed., ‘Proceedings of the 12th International Conference on Automated
Deduction (CADE-12)’, Vol. 814 of LNAI, Springer, Berlin, pp. 778-782.

HAHNLE R. [2001}, Tableaux and related methods, in A. Robinson and A. Voronkov, eds, ‘Hand-
book of Automated Reasoning’, Vol. I, Elsevier Science, chapter 3, pp. 100-178.

HARRISON J. [1996], Optimizing proof search in model elimination, in M. A. McRobbie and
J. K. Slaney, eds, ‘Proceedings of the 13th International Conference on Automated Deduction
(CADE-13)’, Vol. 1104 of LNAI, Springer, Berlin, pp. 313-327.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2111

KLINGENBECK S. AND HAHNLE R. [1994], Semantic Tableaux with Ordering Restrictions, in
A. Bundy, ed., ‘Proceedings, 12th International Conference on Automated Deduction (CADE-
12), Nancy, France’, LNCS 814, Springer, Berlin, pp. 708-722.

KorF R. E. [1985], Iterative-Deepening-A: An Optimal Admissible Tree Search, in A. Joshi,
ed., ‘Proceedings of the 9th International Joint Conference on Artificial Intelligence’, Morgan
Kaufmann, Los Angeles, CA, pp. 1034-1036.

KowaLskI R. A. AND KUEHNER D. [1970], Linear resolution with selection function, Technical
report, Metamathematics Unit, Edinburgh University, Edinburgh, Scotland.

KowaLski R. AND KUEHNER D. [1971], ‘Linear Resolution with Selection Function’, Artificial
Intelligence 2, 227-260.

LETZ R. [1993], First-order calculi and proof procedures for automated deduction, PhD thesis,
Technische Hochschule Darmstadt, Darmstadt, Germany.

LeTZ R. [19984], Clausal Tableaux, in W. Bibel and P. H. Schmitt, eds, ‘Automated Deduction
— A Basis for Applications’, Vol. I: Foundations, Kluwer, Dordrecht, pp. 43-72.

LeTz R. [1998}], Using Matings for Pruning Connection Tableaux, ¢n C. Kirchner and H. Kirch-
ner, eds, ‘Proceedings, 15th International Conference on Automated Deduction (CADE-15),
Lindau, Germany’, Vol. 1421 of LNAI, Springer, Berlin, pp. 381-396.

LETz R. [1999], First-Order Tableaux Methods, in M. D’Agostino, D. Gabbay, R. Hahnle and
J. Posegga, eds, ‘Handbook of Tableau Methods’, Kluwer, Dordrecht, pp. 125-196.

LeTz R., MAYR K. AND GOLLER C. [1994], ‘Controlled Integration of the Cut Rule into Connec-
tion Tableau Calculi’, Journal of Automated Reasoning 13(3), 297-338.

LETZ R., SCHUMANN J. AND BAYERL S. [1989], SETHEO: A SEquentiell THEOrem Prover for first
order logic, Technical Report FKI-97-89, Technische Universitit Miinchen, Munich, Germany.

LeTz R., SCHUMANN J., BAYERL S. AND BIBEL W. [1992], ‘SETHEO: A High-Performance The-
orem Prover’, Journal of Automated Reasoning 8(2), 183-212.

LoVELAND D. W. [1968], ‘Mechanical Theorem Proving by Model Elimination’, Journal of the
ACM 15(2), 236-251. Reprinted in: [Siekmann and Wrightson 1983].

LovELAND D. W. [1969], ‘A Simplified Format for the Model Elimination Theorem-Proving
Procedure’, Journal of the ACM 16(3), 349-363.

LovELAND D. W. [1972], ‘A Unifying View of Some Linear Herbrand Procedures’, Journal of
the ACM 19(2), 366-384.

LovELAND D. W. [1978], Automated theorem proving: A logical basis, North Holland, Amster-
dam.

MAYR K. [1993], Refinements and Extensions of Model Elimination, in A. Voronkov, ed., ‘Pro-
ceedings of the 4th International Conference on Logic Programming and Automated Reasoning
(LPAR’93), St. Petersburg, Russia’, Vol. 698 of LNAI, Springer, Berlin, pp. 217-228.

MoOSER M., IBENs O., LETz R., STEINBACH J., GOLLER C., SCHUMANN J. AND MAYR K.
[1997)], ‘SETHEO and E-SETHEO—The CADE-13 Systems’, Journal of Automated Reason-
ing 18(2), 237-246.

Nerrz W. [1995], Untersuchungen zum selektiven Backtracking in zielorientierten Kalkiilen des
automatischen Theorembeweisens, PhD thesis, University of Leipzig.

NEUGEBAUER G. [1995], ProCom/CaPrl and the Shell ProTop. User’s Guide, FB IMN, HTWK
Leipzig. ftp://www.koralle.imn.htwk-leipzig.de/pub/ProCom/procom.html.

NEUGEBAUER G. AND PETERMANN U. [1995], Specifications of Inference Rules and their Auto-
matic Translation, in P. Baumgartner, R. Hihnle and J. Posegga, eds, ‘Proceedings of the 4th
International Workshop on Theorem Proving with Analytic Tableaux and Related Methods
(TABLEAUX)’, Vol. 918 of LNAI, Springer, Berlin, pp. 185-200.

PELLETIER F. J. AND RUDNICKI P. {1986, ‘Non-obviousness’, AAR Newsletter (6), 4-5.

PLAISTED D. A. [1984], The Occur-check Problem in Prolog, in ‘1984 International Symposium
on Logic Programming’, IEEE Computer Society Press, New York.

PLAISTED D. A. AND GREENBAUM S. [1986], ‘A Structure Preserving Clause Form Translation’,
Journal of Symbolic Computation 2(3), 293-304.

2112 REINHOLD LETZ AND GERNOT STENZ

PrAwITZ D. [1960], ‘An improved proof procedure’, Theoria 26, 102-139. Reprinted in [Siekmann
and Wrightson 1983].

REEVES S. V. [1987], ‘Adding Equality to Semantic Tableaux’, Journal of Automated Reasoning
3, 225-246.

SCHUMANN J. [1991], Efficient Theorem Provers based on an Abstract Machine, PhD thesis,
Technische Universitit Miinchen.

SCHUMANN J. AND LETz R. [1990], PARTHEO: A High-Performance Parallel Theorem Prover,
in M. E. Stickel, ed., ‘Proceedings, 10th International Conference on Automated Deduction
(CADE-10), Saratoga Springs, NY, USA’, LNAT 449, Springer, Berlin, pp. 40-56.

SHosTAK R. E. [1976], ‘Refutation Graphs’, Artificial Intelligence 7, 51-64.

SIEKMANN, J. AND WRIGHTSON, G., EDS [1983], Automation of Reasoning, Springer, Berlin. Two
volumes.

SMULLYAN R. [1968], First-Order Logic, Springer, Berlin.

STICKEL M. E. [1984], A Prolog Technology Theorem Prover, in ‘1984 International Symposium
on Logic Programming’, IEEE Computer Society Press, New York.

STicKEL M. E. [1988], A Prolog Technology Theorem Prover, in E. Lusk and R. Overbeek,
eds, ‘9th International Conference on Automated Deduction (CADE-9), Argonne, I1I’, LNCS,
Springer, Berlin, pp. 752-753.

STICKEL M. E. [1992], ‘A Prolog technology theorem prover: a new exposition and implementa-
tion in Prolog’, Theoretical Computer Science 104, 109-128.

SUTCLIFFE G. AND SUTTNER C. B. [1998], The CADE-14 ATP System Competition, Technical
Report JCU-CS-98/01, Department of Computer Science, James Cook University.

URL: http://www.cs.jcu.edu.au/ftp/pub/techreports/98-01.ps.gz

SUTCLIFFE G., SUTTNER C. AND YEMENIS T. [1994], The TPTP problem library, in A. Bundy,
ed., ‘Proceedings, 12th International Conference on Automated Deduction (CADE-12), Nancy,
France’, LNCS 814, Springer, Berlin, pp. 708-722. Current version available on the World
Wide Web at the URL http://www.cs.jcu.edu.au/ftp/users/GSutcliffe/TPTP.HTML.

TAKI K., YOxoTA M., YAMAMOTO A., NISHIKAWA H., UcHIDA S., NAKASHIMA H. AND MITSUISHI
A. [1984], Hardware Design and Implementation of the Personal Sequential Inference Ma-
chine (PSI), in ‘Proceedings of the International Conference on Fifth Generation Computer
Systems’, ICOT, Tokyo, Japan, pp. 398—409.

TSEITIN G. [1970], ‘On the Complexity of Proofs in Propositional Logics’, Seminars in Mathe-
matics 8.

VLAHAVAS 1. AND HALATSIS C. [1987], A New Abstract Prolog Instruction Set, in ‘Expert systems
and their applications (Proceedings)’, Avignon, pp. 1025-1050.

WALLACE M. AND VERON A. [1993], Two problems — two solutions: One system — ECLiPSe, in
‘Proceedings IEE Colloquium on Advanced Software Technologies for Scheduling’, London.
WARREN D. H. D. [1983], An Abstract PROLOG Instruction Set, Technical Report 309, Artificial
Intelligence Center, Computer Science and Technology Division, SRI International, Menlo

Park, CA.

WEIDENBACH C. [2001], Combining superposition, sorts and splitting, in A. Robinson and A. Vo-
ronkov, eds, ‘Handbook of Automated Reasoning’, Vol. II, Elsevier Science, chapter 27,
pp. 1965-2013.

MODEL ELIMINATION AND CONNECTION TABLEAU PROCEDURES 2113

Index
A
atomic formula 2019
B
bindingciiiiiiiiian 2019, 2071
C
clausal formula 2019
clauseiiiiiiiiiiiiiiiii e 2019
Horn ..iviiiiiiiiniiiennnnnanens 2019
17 o S 2021
tableauc.ciiieiiiiiiian.. 2021
BOP werrrerriaine i 2021
closureruleccoiiiiiiiiininnn 2020
complement00.el 2019
completeness bound 2025
confluenceiiiiiiiiiiian. 2021
connectediiiiiiiiiiiiiiin., 2022
oF:71 + P 2022
stronglyoiiiiiiiiiiiian, 2039
314192 2022
weaklyoiciiiiii ciiiien, 2022
connectioniiiiiiiiiiiian.. 2036
Braph .. il 2073
connection method 2036
connection tableau 2022
calculusooiiiiiiiiiia.., 2022
path ...l 2022
constraint 2093, 2094
disjunctive form 2094
equivalenceccieeinnnn 2094
failurec.ociiiiiiiiiiia, 2097
generationooall 2096
normal form 2095
propagationl 2097
solved form 2095
violationciiiiiall, 2094
cutrule ..., 2052
atomiciiiiiiiiiiiiiieea, 2052
D
data objects
formulaoiiiiiiaa.., 2087
Proofciiiiiiiiiiiiiiiiiianan,s 2087
disequation constraint 2093, 2094
E
entry literal, 2022
enfrynodeocoiiiiiia.n, 2022
expansion rule 2020

extension rulec..iiiiieienn 2022
local ...oiiiiiiiiiiiiiiiiiiiee, 2061
PAth ettt 2022

F

formula
essentialoiiiiiii, 2040
relevantciiiiiiiiiii, 2040

G
global subgoal list 2087
ground projection property 2062
H

head literalccoeiiiiininn 2022

head nodeooeveiinieiniiiennnns 2022

Herbrand complexity 2062

I
iNStanCeeievviiiininnninnnes 2019
iterative deepening 2024
L
Hnk oo e 2075
literalcoiiiiiiiiiiiiiii i 2019
M

MAtiNg «.vvvriirinineneneinnnennnnnss 2036
SPANNINE ..ovveviviniiinniaanaanas 2036

minimally unsatisfiable 2040

model elimination 2034

N

node
failureccciiiiiiiiiiiinn.n. 2023
SUCCEBS +ouvrvnevnenncnneennancnns 2023

P

procedure
exXtenSiONiiieiiiiiiiaannn 2090
solve ... 2090

proof confluenceo..nl 2021

24 0 1 N 2070, 2076

R

reductionruleo.oiiil 2020
localcoiiiiiiiiiiiiiiii, 2061

regularityooiiiiiiiii, 2037

subgoal treeo0al 2044

2114 REINHOLD LETZ AND GERNOT STENZ

S
startrule ..., 2023
strengtheningL. 2063
subconstraintolll 2094
subgoaliiiiiiiiiiiiii, 2020
alternation 2029
reorderingc.oieall 2029
selectioncciiiiiiiennns 2028
substitution o0, 2019
domainciiiiiiiiiiiiien.s 2019
failurecccviiiiiiiiiiiinen. 2045
TANEE .i.venrinnenennrnnenaananns 2019
solutionol 2045
subsumption
clauseciiiiiiiiiiiiae., 2038
compatibility with 2043
deletioncciiiiiiiiiaan 2043
formulatree 2043
tableauciiiiiiill 2042
T
tableau
branch formula 2033
clausalciiiiiiiiiiin 2020
goal formula 2034
goaltreeiilll, 2034
path connection 2022
pathsetcocoiiiiiiiina.n. 2056
search treecccvviuunnnnn 2023
tautologyiiiiiiiiiiiiiiiiia, 2037
elimination0l 2037
L1739 + o K 2019
tree contraction 2042
U
unification
polynomialcooiiiii 2073
Procedureoieeiiiienans 2072
universalcciiiieiiann, 2061
unifier 2019
idempotentooiiial, 2019
minimalciiiiiee 2019
most general ...l 2019
unit clausec.iiiiiiiiiii, 2019
A"
variable
local ..oiiiiiiiiiiiiiiii 2061
rigid ...oieiiiiiiiiii 2020, 2060

