
Computing Galois Groups in 
Mathematica
Mathematica can be used to compute and form Cayley tables of the Galois groups of 
polynomials in R. In addition, Mathematica can actually define a field extension and 
directly produce the elements of the Galois Group.

 By William Paulsen

The purpose of this paper is to demonstrate how  Mathematica can be used to compute and form Cayley tables of the Galois groups of polynomials in R.

There have already been examples of using  Mathematica in an abstract algebra course, but few have gone to the extent of actually  defining a field

extention and directly producing the elements of the Galois group. Such a presentation helps students to comprehend an otherwise difficult subject. 

1.  Introduction
In spite of the fact that Mathematica is making its way into the curriculum of most undergraduate mathemat-
ics programs, there is a shortage of applications available
for abstract algebra. Mathematica notebooks and courseware becoming available as a supplement to a modern
algebra course,but most of them only work with finite groups, offering little aid to the students who go on to
study rings and fields. 

This is ironic, since the power of Mathematica's ReplaceAll command allows students to study extention
fields of Q. For example, consider the extention QH2 cosHΠ �9LL. Using 
trigonometric identities, we see that 2 cosHΠ �9L satisfies the polynomial equation X 3 - 3 X - 1 = 0. Mathemat-
ica can verify that the polynomial is irreducible.

Factor@X^3 - 3 X - 1D

-1 - 3 X + X3

Suppose we were to create a root to this polynomial, z. This can be accomplished by defining z3 to be 3 z + 1.

z �: z^3 := 3 z + 1

Using a TagSetDelayed avoids having to redefine the power function.  Of course this only affects expres-
sions containing z3 directly---we would also like z4 to simplify to 3 z2 + z, and so on.

The module

UsedSymbols = 8<;

Define@a_Symbol^n_Integer, b_D := Module@8i, m<,

UsedSymbols = Union@UsedSymbols, 8a<D;

a �: a^n := b;

For@i = n + 1, i <= 2 n, i++,

a �: a^i := Evaluate@FixedPoint@Expand, Ha^Hi - 1L L aDDD;

a �: a^m_ := FixedPoint@Expand, Ha^H2 nLL Ha^Hm - 2 nLLD �; m > 2 nD

allows us to create definitions with the command

Define@a^3, 3 a + 1D

which defines all powers of a recursively. Thus, Mathematica will quickly simplify a9 to 27 a2 + 90 a + 28.
In like manner we can define QHaL for any algebraic number a.

In actuality, we have defined the field Q@X D � IX 3 - 3 X - 1M, where IX 3 - 3 X - 1M is the ideal  generated

be the polynomial. The isomorphism
QHaL » Q@X D � IX 3 - 3 X - 1M  becomes clear in this setting, which is a beautiful illustration of the first

isomorphism  theorem for rings.

Other patterns become evident from this example. We can describe any element
of this field in terms of A1 + A2 a + A3 a2, where A1, A2, and A3  are rational numbers. It is clear  that any
higher power of a will be expressible in this form, hence the product
of any two numbers in this field evaluates to an expression in the field:
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Expand@Expand@HA1 + A2 a + A3 a^2L HB1 + B2 a + B3 a^2LDD

A1 B1 + a A2 B1 + a2 A3 B1 + a A1 B2 + a2 A2 B2 +

A3 B2 + 3 a A3 B2 + a2 A1 B3 + A2 B3 + 3 a A2 B3 + a A3 B3 + 3 a2 A3 B3

From this we can see that this new field is a three dimensional extension of Q, which naturally
comes from that fact that the polynomial we used, X 3 - 3 X - 1, is a cubic polynomial.

But this raises another question. Since we have created this field so that X 3 - 3 X - 1 will have a root,
namely a, can we now use Mathematica to factor this polynomial? Certainly one factor would
be HX - aL, and Mathematica can find the other factor with the command

g = PolynomialQuotient@X^3 - 3 X - 1, X - a, XD

-3 + a2
+ a X + X2

yet the result does not factor over Q:

Factor@gD

-3 + a2
+ a X + X2

Yet this  expression may very well  factor  in  the field QHaL  that  we have just  defined.  How can students
determine whether this factors in QHaL?

Although Mathematica 3.0 has a factor command that allows coefficients of the polynomial to be rational
combinations of algebriac numbers, these rational fuctions are limited to square roots and higher order roots.
Since there is no way of declaring a to be algebriac, we must find another way
to factor polynomials in QHaL.

2.  Factorization in Q(a)
Students can easily define the extention QHaL with one Define command, using the irreducible polynomial
f HX L for which a is a root. However, there will be other roots to the polynomial
f HX L besides the root a. For example, the three roots of X 3 - 3 X - 1 are as follows.

NSolve@X^3 - 3 X - 1 == 0, XD

88X ® -1.53209<, 8X ® -0.347296<, 8X ® 1.87939<<

We can use the roots of the irreducible polynomial to produce the next  definition.  

� Definition 2.1
Given an irreducible polynomial f HXL with roots
a1, a2, a3, … an, we define the norm of a function gHaL
to be 
                       N HgHaLL = gHa1L × gHa2L × gHa3L º gHanL.
For example, the norm of gHaL defined above can be computed in
Mathematica.
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For example, the norm of gHaL defined above can be computed in
Mathematica.

Expand@Hg �. a -> -1.53209L Hg �. a -> -0.347296L Hg �. a -> 1.87939LD

1.00003 + 6.00007 X + 8.99996 X2
- 2.00004 X3

- 5.99999 X4
+ 4. ´ 10-6 X5

+ X6

The fact that the coefficients are integers comes as no surprise, since NHgL is a symetric function of the three
roots. It is not difficult to have Mathematica determine how much precision is needed to find the coefficients
to the nearest integer. The routine Norm[g, a] is included in the package

<< galois.m

Thus, we can use this routine to find the exact value of NHgL.
Define@a^3, 3 a + 1D
Norm@g, aD

1 + 6 X + 9 X2
- 2 X3

- 6 X4
+ X6

Since we now have a standard polynomial in Q, we can use Mathematica to factor this.

Factor@%D

I-1 - 3 X + X3M2

We see that this factors! This suggests that gHX L may factor as well. However, NHgL may factor even if gHX L
does not. But if we make a slight modification to gHX L before we take the norm, we can
determine whether or not gHX L factors in QHaL.

� Proposition 2.2
Let gHX , aL be a polynomial in QHaL@XD. 
Let hHX , Λ, aL = gHX - Λ a, aL be the polynomial formed by replacing
X  with X - Λ a, where Λ is introduced as a new variable.
Then gHX , aL factors if, and only if, N HhHX , Λ, aLL factors in 
Q@X , ΛD.

Proof:
If  gHX , aL  factors  into  pHX , aL × q HX , aL,  then  hHX , Λ, aL = pHX - Λ a, aL × qHX - Λ a, aL,  and  so
NHhHX , Λ, aLL = NHpHX - Λ a, aLL × NHqHX - Λ a, aLL, and so NHhHX , ΛLL factors in Q@X , ΛD. 
Now suppose that gHX , aL is an irreducible polynomial of degree r in QHaL@X D. We may assume without loss
of generality that the leading coefficent of gHX L is 1. Let us define 
jHX , Λ, aL = hHΛ X , Λ, aL = gHΛ X - Λ a, aL.
The  norm  of  jHX , Λ, aL  is  given
by

gHΛ X - Λ a1, a1L × gHΛ X - Λ a2, a2L × HΛ X - Λ a3, a3L º gHΛ X - Λ an, anL Ε Q@X , ΛD    (*)

where a1, a2, a3, … an are the n roots of the irreducible polynomial f HX L. 
Since gHX , aL irreducible in QHaL@X , ΛD, so is gHΛ X - Λ ai, aiL for each 1 £ i £ n. Thus, (*) is the factoriza-
tion of NH jHX , Λ, aLL in QHaL@X , ΛD. If NH jHX , Λ, aLL should factor in Q@X , ΛD, then a non-trivial subset of
factors in (*) must produce a polynomial in Q[X,Λ]. That is, there is a subset of roots 8ak1

, ak2
, …, akm < such

that

gHΛ X - Λ ak1
, ak1

L × gHΛ X - Λ ak2
, ak2

L º gHΛ X - Λ akm , akm L Ε Q@X , ΛD.    (**)

Let us now consider the terms in (**) with the highest power of Λ.The highest coefficient of gHX , aL is 1, and
it is apparent that the other terms in gHX , aL will not contribute to the highest power of Λ. Thus, the terms
with the largest power of Λ will be

Λr m × HX - ak1
Lr × HX - ak2

Lr
º HX - akm Lr.

Thus,  @HX - ak1
L HX - ak2

L ºHX - akm LD r Ε Q@X D.  But  since  Q  is  of  characteristic  0,  we  can  say  that

HX - ak1
L HX - ak2

L ºHX - akm L Ε Q@X D.  But f HX L  is  an irreducible polynomial of degree n  containing the

same roots.  Thus,  m = n,  and  so  NH jHX , Λ, aLL  is  irreducible  in  Q@X , ΛD.  Since  NHhHX , Λ, aLL  is  merely
NH jHX , Λ, aLL , replacing X  with X � Λ, we have that NHhHX , Λ, aLL is also irreducible in Q@X , ΛD.
                                                                                                            �

GalComp.nb  3



Proof:
If  gHX , aL  factors  into  pHX , aL × q HX , aL,  then  hHX , Λ, aL = pHX - Λ a, aL × qHX - Λ a, aL,  and  so
NHhHX , Λ, aLL = NHpHX - Λ a, aLL × NHqHX - Λ a, aLL, and so NHhHX , ΛLL factors in Q@X , ΛD. 
Now suppose that gHX , aL is an irreducible polynomial of degree r in QHaL@X D. We may assume without loss
of generality that the leading coefficent of gHX L is 1. Let us define 
jHX , Λ, aL = hHΛ X , Λ, aL = gHΛ X - Λ a, aL.
The  norm  of  jHX , Λ, aL  is  given
by

gHΛ X - Λ a1, a1L × gHΛ X - Λ a2, a2L × HΛ X - Λ a3, a3L º gHΛ X - Λ an, anL Ε Q@X , ΛD    (*)

where a1, a2, a3, … an are the n roots of the irreducible polynomial f HX L. 
Since gHX , aL irreducible in QHaL@X , ΛD, so is gHΛ X - Λ ai, aiL for each 1 £ i £ n. Thus, (*) is the factoriza-
tion of NH jHX , Λ, aLL in QHaL@X , ΛD. If NH jHX , Λ, aLL should factor in Q@X , ΛD, then a non-trivial subset of
factors in (*) must produce a polynomial in Q[X,Λ]. That is, there is a subset of roots 8ak1

, ak2
, …, akm < such

that

gHΛ X - Λ ak1
, ak1

L × gHΛ X - Λ ak2
, ak2

L º gHΛ X - Λ akm , akm L Ε Q@X , ΛD.    (**)

Let us now consider the terms in (**) with the highest power of Λ.The highest coefficient of gHX , aL is 1, and
it is apparent that the other terms in gHX , aL will not contribute to the highest power of Λ. Thus, the terms
with the largest power of Λ will be

Λr m × HX - ak1
Lr × HX - ak2

Lr
º HX - akm Lr.

Thus,  @HX - ak1
L HX - ak2

L ºHX - akm LD r Ε Q@X D.  But  since  Q  is  of  characteristic  0,  we  can  say  that

HX - ak1
L HX - ak2

L ºHX - akm L Ε Q@X D.  But f HX L  is  an irreducible polynomial of degree n  containing the

same roots.  Thus,  m = n,  and  so  NH jHX , Λ, aLL  is  irreducible  in  Q@X , ΛD.  Since  NHhHX , Λ, aLL  is  merely
NH jHX , Λ, aLL , replacing X  with X � Λ, we have that NHhHX , Λ, aLL is also irreducible in Q@X , ΛD.
                                                                                                            �

Let us use this proposition to see whether the polynomial gHX L = - 3 + a2 + a X + X 2 factors in QHaL@X D.
g �. X -> X - L a

-3 + a2
+ a H-a L + XL + H-a L + XL2

h = Norm@%, aD

1 - 3 L - 21 L2
+ 47 L3

- 21 L4
- 3 L5

+ L6
+ 6 X - 15 L X + 6 L2 X + 6 L3 X - 15 L4 X + 6 L5 X + 9 X2

-

18 L X2
+ 27 L2 X2

- 18 L3 X2
+ 9 L4 X2

- 2 X3
+ 3 L X3

+ 3 L2 X3
- 2 L3 X3

- 6 X4
+ 6 L X4

- 6 L2 X4
+ X6

Factor@hD

I1 + 3 L - 6 L2
+ L3

+ 3 X - 3 L X + 3 L2 X - X3M I1 - 6 L + 3 L2
+ L3

+ 3 X - 3 L X + 3 L2 X - X3M

We find that -3 + a2 + a X + X 2 indeed factors in QHaL@X D. Is there a way to use this factorization to find
the original factors ofgHX L? In a sense we must "un-norm'' each of the factors of hHX L. Because we left Λ
unspecified, not only is this doable, but it can be done by solving linear equations. The key lies in penultimate
powers  of  Λ  in  equation  (**).  The  package  "galois.m''  contains  a  function  UnNorm  which  can  quickly
determine what the original factorization must be.

UnNorm@%, L, X, aD

I2 + a - a2
+ XM I-2 + a2

+ XM

Indeed, this gives us a way of factoring any polynomial in Q(a). The package "galois.m'' expands the Factor
command to allow factoring in the field Q(a). For example, we can factor the polynomial X 3 - 3 X - 1 in
QHaL as follows:

Factor@X^3 - 3 X - 1, aD

H-a + XL I2 + a - a2
+ XM I-2 + a2

+ XM

3.  Splitting Fields
We can try the same procedure on other polynomials to see if they behave the same way. Let us consider the

polynomial X 3 - 2, whose extension field would be QJ 2
3 N.

ClearDefs

Define@a^3, 2D

Factor@X^3 - 2, aD

H-a + XL Ia2
+ a X + X2M

The ClearDefs  command erases the definition of the variables in UsedSymbols,  allowing us to reuse the
variable a. Notice that the polynomial X 3 - 2 did not factor completely as X 3 - 3 X - 1 did. The explana-

tion is that X 3 - 2 has complex roots, while QJ 2
3 N contains only real numbers. But we can fix this problem

by defining a new variable b to be a root of the quadratic factor a2 + a X + X 2.

Define@b^2, - a^2 - a bD

We now have defined an "extention of an extention.'' In order to factor the polynomial in the field QHa, bL, we
will apply a shortcut. We will use the following theorem found in many abstract algebra books.
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We now have defined an "extention of an extention.'' In order to factor the polynomial in the field QHa, bL, we
will apply a shortcut. We will use the following theorem found in many abstract algebra books.

� Theorem 3.1
Let F be a field of characteristic 0 (such as Q). Then if K = FHa1, a2, …, anL is an 
algebraic extension of F, then K = FHcL for some c in K.

See [2, p. 297] or [3, p. 479] for a detailed proof. The basic idea behind the proof is to show that there are
only a finite number of values of Λ for which QHΛ a + bL ¹ QHa, bL. Thus, Mathematica can use a trial and
error method to find a suitable value of Λ. The function SimpleExtension
selects a value c which fulfills theorem 3.1.

SimpleExtension@a, bD

2 a + b

Mathematica  can now factor a polynomial in the field QHa, bL = QH2 a + bL  using the same procedure as
with a simple extention.

Factor@X^3 - 2, a, bD

H-a + XL H-b + XL Ha + b + XL

Thus, we see that by defining an extention of an extention, we have succeeded in getting the polynomial to
factor completely. We define the splitting field of a polynomial to be the smallest extention of Q for which
the polynomial "splits completely'' in this mannor. Therefore,
the splitting field of X 3 - 2 is QHa, bL, which is a six dimensional extension of Q.

Let us try a more complicated example, X 5 - X + 1, which demonstratesMathematica's capacity and speed.

ClearDefs

Define@a^5, a - 1D

Factor@X^5 - X + 1, aD

H-a + XL I-1 + a4
+ a3 X + a2 X2

+ a X3
+ X4M

Define@b^4, 1 - a^4 - a^3 b - a^2 b^2 - a b^3D

Factor@X^5 - X + 1, a, bD

H-a + XL H-b + XL Ia3
+ a2 b + a b2

+ b3
+ a2 X + a b X + b2 X + a X2

+ b X2
+ X3M

Define@c^3, - a^3 - a^2 b - a b^2 - b^3 - a^2 c - a b c - b^2 c - a c^2 - b c^2D

Factor@X^5 - X + 1, a, b, cD

H-a + XL H-b + XL H-c + XL Ia2
+ a b + b2

+ a c + b c + c2
+ a X + b X + c X + X2M

Define@d^2, -a^2 - a b - b^2 - a c - b c - c^2 - a d - b d - c dD

Factor@X^5 - X + 1, a, b, c, dD

H-a + XL H-b + XL H-c + XL H-d + XL Ha + b + c + d + XL

Notice we had to make four extentions before the polynomial finally split. Thus, the splitting field for this
polynomial has 5 × 4 × 3 × 2 = 120 dimensions. This is obviously the maximum number of dimensions for a
splitting field of a fifth degree polynomial.

4.  Field Automorphisms
Once we have defined the splitting field for a polynomial, we can ask what automorphisms exist on this field.
It is not hard to prove that the automorphisms must send one root of the polynomial to another root. (See [1,
p. 282].) Furthermore, the automorphism will be completely determined by where the automorphism sends
the roots of the polynomial. Thus, we can view any automorphism on the splitting field as a permutation of
the roots of the polynomial.

How can we determine whether a given permutation of the roots represents an  automorphism? We can have
Mathematica help us!  Let us choose the polynomial X 5 - 5 X + 12 to illustrate the process.
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How can we determine whether a given permutation of the roots represents an  automorphism? We can have
Mathematica help us!  Let us choose the polynomial X 5 - 5 X + 12 to illustrate the process.

ClearDefs

Define@a^5, 5 a - 12D

Factor@X^5 - 5 X + 12, aD

H-a + XL 2 -

5 a

4
-

a2

4
-

a3

4
-

a4

4
+ X +

3 a X

4
-

a2 X

4
-

a3 X

4
-

a4 X

4
+ X2

-1 -

a

2
-

a3

2
- X +

a X

4
+

a2 X

4
+

a3 X

4
+

a4 X

4
+ X2

We can let b be a root of the last factor, and try the factorization again.

Define@b^2, 1 + a � 2 + a^3 � 2 + b - a b � 4 - a^2 b � 4 - a^3 b � 4 - a^4 b � 4D

Factor@X^5 - 5 X + 12, a, bD

H-a + XL H-b + XL -1 +

a

4
+

a2

4
+

a3

4
+

a4

4
+ b + X

3

2
+

a

4
-

a2

4
-

a3

4
-

a4

4
-

b

2
-

a b

2
+ X -

1

2
+

a

2
+

b

2
+

a b

2
+ X

It is natural to label the three other roots of this polynomial as c, d, and e.

c = 1 - a � 4 - a^2 � 4 - a^3 � 4 - a^4 � 4 - b;

d = -3 � 2 - a � 4 + a^2 � 4 + a^3 � 4 + a^4 � 4 + b � 2 + a b � 2;

e = 1 � 2 - a � 2 - b � 2 - a b � 2;

In order to define an automorphism on this splitting field, we only have to define where a and b are sent to,
and the other three roots will follow suit. It is easy to define a homomorphism in Mathematica. The following
creates the command Homomorph[F] which defines F to be a homomorphism.

Homomorph@F_SymbolD := Module@8a, b<,

UsedSymbols = Union@UsedSymbols, 8F<D;

ClearAll@FD;

F@a_ b_D := FixedPoint@Expand, F@aD F@bDD;

F@a_ + b_D := F@aD + F@bD;

F@a_ ^b_IntegerD := FixedPoint@Expand, F@aD^bD;

F@a_IntegerD := a;

F@a_RationalD := a;D

For example, we can easily define a homomorphism which sends a to b, and sends b back to a.

Homomorph@FD

F@aD := b

F@bD := a

The command CheckHomo in the package "galois.m'' can confirm for us that this is indeed a homomorphism
on QHa, bL.
CheckHomo@F, 8a, b<D

True

We can also have Mathematica graph this homomorphism on the set of five roots.
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CircleGraph@8a, b, c, d, e<, FD;

Ł

ŁŁ

Ł

Ł

a

b

cd

e

Not every choice of F@aD and F@bD will produce an automorphism;

Homomorph@FD

F@aD := b

F@bD := c

CheckHomo@F, 8a, b<D

f@bD * f@bD is not equal to f@b*bD

False

yet it is not hard to find automorphisms that do work. These become theelements of the Galois group. Thus,
Mathematica allows us to visualize the different automorphisms of the Galois group of the polynomial. Here
is another example.

Homomorph@FD

F@aD := a

F@bD := c

CheckHomo@F, 8a, b<D

True
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CircleGraph@8a, b, c, d, e<, FD;

Ł

ŁŁ

Ł

Ł

a

b

cd

e

From  these  two  elements  of  the  Galois  group,  we  can  actually  produce  the  entire  Galois  group  of
X 5 - 5 X + 12. We will develop a quick way to produce these elements in the next section.

5.  The Galois Group of a Polynomial
Now that we are able to discover some of the elements of the Galois group, the natural step would be to use
these elements to produce the whole Galois group of a polynomial. If we number the roots of the polynomial,
we can view each element of the Galois group as a standard permutation.

For example, the roots of the polynomial X 5 - 5 X + 12 can be numbered a = 1, b = 2, c = 3, d = 4, and
e = 5. Then the two automorphisms discovered in the last section could be viewed as the permutations ]

                 
1 2 3 4 5

2 1 4 3 5
   and    

1 2 3 4 5

1 3 2 5 4
.

These permutations can be entered into Mathematica using only the bottom row of the permutation.

P@2, 1, 4, 3, 5D

P@2, 1, 4, 3D

P@1, 3, 2, 5, 4D

P@1, 3, 2, 5, 4D

Here, the P stands for "permutation.'' Notice that if the last number is sent to itself in the permutation, it is
omitted  to  save  space.  We  can  multiply  two  permutations  using  CenterDot  for  the  non-commutative
multiplication.

P@2, 1, 4, 3D × P@1, 3, 2, 5, 4D

P@2, 4, 1, 5, 3D

The Group command, which was described in [4], is also in the "galios.m'' package. Thus, we can find the
subgroup of S5 generated by these two permutations as follows:
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Group@8P@2, 1, 4, 3D, P@1, 3, 2, 5, 4D<D

8P@D, P@2, 1, 4, 3D, P@1, 3, 2, 5, 4D, P@3, 1, 5, 2, 4D, P@2, 4, 1, 5, 3D,

P@4, 2, 5, 1, 3D, P@3, 5, 1, 4, 2D, P@5, 3, 4, 1, 2D, P@4, 5, 2, 3, 1D, P@5, 4, 3, 2, 1D<

Since the splitting field of X 5 - 5 X + 12 is 10 dimensional, we would expect the Galois group to have 10
elements. Since Mathematica has found 10 elements in the Galois group, we have found all of them.

Which group is this isomorphic to? It is obvious that none of these elements is of order 10. Thus, the group
cannot be isomorphic to Z10. The only other group of order 10 is D5, so this group is isomorphic to D5. Note
that [5] claims the Galois group is F20, which is wrong. 

Let us try one more example---the polynomial X 8 - 24 X 6 + 144 X 4 - 288 X 2 + 144. We can first note
that this polynomial is irreducible over the rational numbers.

ClearDefs

Factor@X^8 - 24 X^6 + 144 X^4 - 288 X^2 + 144D

144 - 288 X2
+ 144 X4

- 24 X6
+ X8

We can define a to be a root of this polynomial, and factor it over QHaL.
Define@a^8, 24 a^6 - 144 a^4 + 288 a^2 - 144D

Factor@X^8 - 24 X^6 + 144 X^4 - 288 X^2 + 144, aD
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As we can see, the polynomial factors completely in QHaL. The roots can be given as ±a, ±b, ±c, and ±d,
where

b = a + 5 a^3 � 2 - 5 a^5 � 6 + a^7 � 24;

c = 3 a - 3 a^3 � 2 + a^5 � 12;

d = 10 a - 17 a^3 � 2 + 11 a^5 � 6 - a^7 � 12;

which are all expressed in terms of a. Thus, an automorphism of the splitting field will be completely deter-
mined by which root a is sent to. Suppose that a is sent to b.

Homomorph@FD

F@aD := b

CheckHomo@F, 8a<D

True
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CircleGraph@8a, b, c, d, -a, -b, -c, -d<, FD;
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We can also consider a homomorphism which sends a to c.

Homomorph@FD

F@aD := c

CheckHomo@F, 8a<D

True

CircleGraph@8a, b, c, d, -a, -b, -c, -d<, FD;
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If we lable the roots of the polynomial in the order that they appear in these circle graphs, we find that the
first permutation of the roots corresponds to the permutation  P[2,5,8,3,6,1,4,7], while the second automor-
phism can be expressed by the permutation P[3,4,5,6,7,8,1,2]. Hence, we can find
more automorphisms by considering the group generated by these two elements.

G = Group@8P@2, 5, 8, 3, 6, 1, 4, 7D, P@3, 4, 5, 6, 7, 8, 1, 2D<D

8P@D, P@2, 5, 8, 3, 6, 1, 4, 7D, P@7, 8, 1, 2, 3, 4, 5, 6D,

P@8, 3, 6, 1, 4, 7, 2, 5D, P@5, 6, 7, 8, 1, 2, 3, 4D,

P@6, 1, 4, 7, 2, 5, 8, 3D, P@3, 4, 5, 6, 7, 8, 1, 2D, P@4, 7, 2, 5, 8, 3, 6, 1D<

The package "galois.m'' also includes a command MultTable which allows us to see the Cayley table of this
group of permutations.
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The package "galois.m'' also includes a command MultTable which allows us to see the Cayley table of this
group of permutations.

MultTable@GD;

P@D
P@2,5,8,3,6,1,4,7D
P@7,8,1,2,3,4,5,6D
P@8,3,6,1,4,7,2,5D
P@5,6,7,8,1,2,3,4D
P@6,1,4,7,2,5,8,3D
P@3,4,5,6,7,8,1,2D
P@4,7,2,5,8,3,6,1D

Mathematica uses a color code for the elements, which is shown here as shading. By comparing this table
with the 5 known groups of order 8, we see that the Galois group of X 8 - 24 X 6 + 144 X 4 - 288 X 2 + 144
is 
isomorphic to the quaternionic group, Q8. Hence, we can use Mathematica to find the Galois groups of fairly
complicated polynomials.

By  having  a  visualization  of  the  Galois  groups,  students  have  an  easier  time  grasping  the  fundemental
theorem of Galois theory. From this point, it is not hard for the students to learn the many consequences of
Galois theory, such as the insolvability of fifth degree polynomials in terms of radicals.
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