Computing Galois Groups in
Mathematica

Mathematica can be used to compute and form Cayley tables of the Galois groups of
polynomials in R. In addition, Mathematica can actually define a field extension and
directly produce the elements of the Galois Group.

By William Paulsen

The purpose of this paper is to demonstrate how Mathematica can be used to compute and form Cayley tables of the Galois groups of polynomials in R.
There have already been examples of using Mathematica in an abstract algebra course, but few have gone to the extent of actually defining a field
extention and directly producing the elements of the Galois group. Such a presentation helps students to comprehend an otherwise difficult subject.

1. Introduction

In spite of the fact that Mathematica is making its way into the curriculum of most undergraduate mathemat-
ics programs, there is a shortage of applications available

for abstract algebra. Mathematica notebooks and courseware becoming available as a supplement to a modern
algebra course,but most of them only work with finite groups, offering little aid to the students who go on to
study rings and fields.

This is ironic, since the power of Mathematica's ReplaceAll command allows students to study extention
fields of Q. For example, consider the extention Q(2 cos(rr/9)). Using

trigonometric identities, we see that 2 cos(rr/9) satisfies the polynomial equation X3 — 3 X — 1 = 0. Mathemat-
ica can verify that the polynomial isirreducible.

Factor [ X3 -3 X - 1]

-1-3X+X3

Suppose we were to create aroot to this polynomial, z. This can be accomplished by defining Z2tobe3z + 1.
z/: z"3 :=3z +1

Using a TagSetDelayed avoids having to redefine the power function. Of course this only affects expres-
sions containing 2 directly---we would also like Z* to simplify to 322 + z, and so on.

The module

UsedSynbol s = {};

Define[a_Synbol ~n_Integer, b_] := Mdule[{i, m},
UsedSynbol s = Uni on[UsedSynbol s, {a}l;

a/: a™n :=b;
For[i =n+1, i <= 2n, i ++,
a/: a”i := Eval uate[Fi xedPoi nt [Expand, (a”™ (i -1) ) alll;
a/: a"m_:= FixedPoint [Expand, (a” (2n)) (a® (m-2n))] /; m> 2n]

alows us to create definitions with the command
Define[an3, 3a+1]

which defines all powers of a recursively. Thus, Mathematica will quickly simplify a° to 27a? + 90a + 28.
In like manner we can define Q(a) for any algebraic number a.
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In actuality, we have defined the field Q[ X] / (X3 — 3X — 1), where (X3 — 3X - 1)istheideal generated

be the polynomial. The isomorphism
Q@) ~Q[X] /(X® - 3X — 1) becomes clear in this setting, which is a beautiful illustration of the first

isomorphism theorem for rings.

Other patterns become evident from this example. We can describe any element

of thisfield interms of Ay + Ara + Aza?, where Aq, Ay, and As are rational numbers. It is clear that any
higher power of a will be expressible in this form, hence the product

of any two numbersin this field evaluates to an expression in the field:

Expand [Expand[ (Al + A2a + A3a”2) (Bl + B2a + B3an2)]]

AlBl+aA2Bl+a’?A3Bl+aAlB2+a?A2B2+
A3B2+3aA3B2+a’A1B3+A2B3+3aA2B3+aA3B3+3a%A3B3

From this we can see that this new field is athree dimensional extension of Q, which naturally
comes from that fact that the polynomial we used, X2 — 3 X — 1, isacubic polynomial.

But this raises another question. Since we have created this field so that X® — 3 X - 1 will have a root,
namely a, can we now use Mathematica to factor this polynomial? Certainly one factor would
be (X - a), and Mathematica can find the other factor with the command

g = Polynom al Quotient [X*3 - 3X -1, X-a, X]
-3+aZ+aX+X?

yet the result does not factor over Q:

Factor [g]

-3+aZ+aX+ X

Yet this expression may very well factor in the field Q(a) that we have just defined. How can students
determine whether this factorsin Q(a)?

Although Mathematica 3.0 has a factor command that allows coefficients of the polynomial to be rational
combinations of algebriac numbers, these rational fuctions are limited to square roots and higher order roots.
Since there is no way of declaring a to be algebriac, we must find another way

to factor polynomialsin Q(a).

2. Factorization in Q(a)

Students can easily define the extention Q(a) with one Define command, using the irreducible polynomial
f (X) for which a isaroot. However, there will be other roots to the polynomial
f (X) besides the root a. For example, the three roots of X3 — 3X — 1 areasfollows.

NSol ve[X*3 - 3X -1 == 0, X]
{{X > -1.53209}, {X - -0.347296}, {X > 1.87939}}

We can use the roots of the irreducible polynomial to produce the next definition.

m Definition 2.1
Given an irreducible polynomial f (X) with roots
ay, ap, ag, ... an, wedefinethe norm of a function g(a)
to be
N(g@) = g(@) - g(@) - g(@) -+ g(an).
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For example, the norm of g(a) defined above can be computed in
Mathematica.

Expand[(g /. a -> -1.53209) (g /. a -> -0.347296) (g /. a -> 1.87939)]
1. 00003 + 6. 00007 X + 8. 99996 X2 - 2. 00004 X3 - 5. 99999 X* + 4. x10°% X5 + X8

The fact that the coefficients are integers comes as no surprise, since N(g) is a symetric function of the three
roots. It is not difficult to have Mathematica determine how much precision is needed to find the coefficients
to the nearest integer. The routine Norm[g, a] isincluded in the package

<< galois.m

Thus, we can use this routine to find the exact value of N(Q).

Define[a™”3, 3a + 1]
Nor m[g, a]

1+6X+9X2-2X3_6X+ X
Since we now have a standard polynomial in Q, we can use Mathematica to factor this.

Fact or [%]
(-1-3Xx+X)?

We see that this factors! This suggests that g(X) may factor as well. However, N(g) may factor even if g(X)
does not. But if we make a slight modification to g(X) before we take the norm, we can
determine whether or not g(X) factorsin Q(a).

Proposition 2.2

Let g(X, a) beapolynomial in Q@[ X].

Let h(X, A,a = g(X - Aa, a) bethepolynomial formed by replacing

X with X — Aa, whereA isintroduced as a new variable.

Then g(X, a) factorsif, and only if, N(h(X, A, a)) factorsin

QI[X, Al

Proof:

If g(X,a) factors into p(X, a)- q(X, a), then h(X,A,a) = p(X —1a,a - -qX — 1a a), and o0
N(h(X, 2, @) = N(p(X — da, a)) - N(q(X — Aa, a)), and so N(h(X, 1)) factorsin Q[ X, A].

Now suppose that g(X, a) is an irreducible polynomial of degreer in Q(a)[X]. We may assume without loss
of generality that the leading coefficent of g(X) is 1. Let usdefine

jX,; A, a=h@AX, 2 a=9gAX - 21a, a).

The norm of (X, A, a) is given

by

gAX — dag, a) gA X — dap, @) (A X — Aag, ag) - gA X — Aan, a) € Q[X, ] (*)

wherea;, ap, ag, ... a, arethe nroots of the irreducible polynomial f(X).

Since g(X, a) irreduciblein Q@[ X, A], soisg(A X — A a;, &) foreachl< i < n. Thus, (*) isthe factoriza-
tion of N(j(X, 4, @) inQ@[X, A]. If N(j(X, A, a)) should factor in Q[X, A], then a non-trivia subset of
factorsin (*) must produce a polynomial in Q[X,A]. That is, thereis a subset of roots {ay, a,, ..., a,} such
that

gA X = day, &) gAX - da, ag) - gA X - dag, &, € Q[X,A]. (**)
Let us now consider thetermsin (**) with the highest power of A.The highest coefficient of g(X, a) is 1, and

it is apparent that the other termsin g(X, a) will not contribute to the highest power of A. Thus, the terms
with the largest power of A will be
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M (X = a) - (X = ag) - (X = a,)".

Thus, [(X — &) (X — a,) (X — a,)]" e Q[X]. But since Q is of characteristic 0, we can say that
(X = &) (X = ay,) (X - a,) eQ[X]. But f(X) isan irreducible polynomial of degree n containing the
same roots. Thus, m = n, and so N(j(X, A, &) isirreducible in Q[X, A]. Since N(h(X, A, a)) is merely
N(j(X, A, &), replacing X with X /A, we havethat N(h(X, A, @)) isalso irreduciblein Q[ X, A].

O

Let us use this proposition to see whether the polynomial g(X) = =3 + & + aX + X2 factorsin Q@[ X].
g/. X->X-1La

-3+a%+a (-aL+X)+ (-aL+X)?

h = Norm[%, a]

1-3L-21L2+471%-211%-3L°+1°+6X-15LX+6L°X+6L3X-15L*X+6L%>X+9X* -
I8LX?+27L2 X2 -18L3 X2+ 9L X -2X3+3L X +3L2X-213X3-6X +6LX -6L2X +X°
Fact or [h]

(1+3L-6L7+L3+3X-3LX+3L2X-X®) (1-6L+3L2+L%+3X-3LX+3L*X-X3)

Wefindthat -3 + a® + aX + X2 indeed factorsin Q(a)[ X]. |s there away to use this factorization to find
the original factors ofg(X)? In a sense we must "un-norm" each of the factors of h(X). Because we left A
unspecified, not only is this doable, but it can be done by solving linear equations. The key liesin penultimate
powers of A in equation (**). The package "galoism" contains a function UnNorm which can quickly
determine what the original factorization must be.

UnNor m[%, L, X, a]
(2+a7a2+x) (—2+a2+X>

Indeed, this gives us a way of factoring any polynomial in Q(a). The package "galois.m" expands the Factor
command to allow factoring in the field Q(a). For example, we can factor the polynomial X3 — 3X — 1in
Q(a) asfollows:

Factor [ X3 - 3X -1, a]

(-a+X) (2+a7a2+x) (72+a2+X)

3. Splitting Fields
We can try the same procedure on other polynomials to see if they behave the same way. Let us consider the
polynomial X3 — 2, whose extension field would beQ(ﬁ).
Cl ear Def s
Define[a™3, 2]
Factor [X3 - 2, a]
(-a+X) (a®+aX+X?)

The Clear Defs command erases the definition of the variables in UsedSymbols, allowing us to reuse the
variable a. Notice that the polynomial X2 — 2 did not factor completely as X3 — 3 X — 1 did. The explana-

tionisthat X3 — 2 has complex roots, while Q(\/?) contains only real numbers. But we can fix this problem

by defining anew variable b to be aroot of the quadratic factor &% + a X + X2.
Define[b”"2, -a”2 - ab]

We now have defined an "extention of an extention." In order to factor the polynomial in the field Q(a, b), we
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will apply a shortcut. We will use the following theorem found in many abstract algebra books.

m Theorem 3.1
Let F beafield of characteristic 0 (such as@Q). Then if K = F(a, &, ..., &, isan
algebraic extension of F, then K = F(c) for somecin K.

See[2, p. 297] or [3, p. 479] for a detailed proof. The basic idea behind the proof is to show that there are
only afinite number of values of A for which Q(Aa + b) + Q(a, b). Thus, Mathematica can use atria and
error method to find a suitable value of A. The function SimpleExtension

selects avalue ¢ which fulfills theorem 3.1.

Si npl eExt ensi on[a, b]
2a+b

Mathematica can now factor a polynomial in the field Q(a, b) = Q(2a + b) using the same procedure as
with asimple extention.

Factor [X"3 -2, a, b]
(—a+X) (-b+X) (a+b+X)

Thus, we see that by defining an extention of an extention, we have succeeded in getting the polynomial to
factor completely. We define the splitting field of a polynomial to be the smallest extention of Q for which
the polynomial "splits completely" in this mannor. Therefore,

the splitting field of X3 — 2isQ(a, b), which is asix dimensional extension of Q.

Let us try amore complicated example, X5 — X + 1, which demonstratesMathematica's capacity and speed.
Cl ear Def s

Define[a”5, a -1]

Factor [X5 - X + 1, a]

(-a+X) (-1+a*+a®X+a”? X +a X + X}

Define[b”"4, 1 - a*4 - a*3b - a”2b”2 - ab”"3]

Factor [X"5 - X + 1, a, b]

(-a+X) (-b+X) (a®+a’b+ab®+b®+a®X+abX+b*X+aX +b X +X3)
Define[c”"3, -a”"3 -a”2b -ab”"2 - b"3 -a"2c -abc -b”"2c -ac”"2 - bc"2]
Factor [X*5 - X + 1, a, b, c]

(-a+X) (-b+X) (-c+X) (a®?+ab+b®+ac+bc+c?+aX+bX+cX+X)
Define[d*2, -a”2 - ab -b”"2 -ac -bc-c¢c”"2 -ad-bd-cd]
Factor [X"5 - X + 1, a, b, c, d]

(—a+X) (-b+X) (-c+X) (-d+X) (a+b+c+d+X)

Notice we had to make four extentions before the polynomia finally split. Thus, the splitting field for this
polynomial has5- 4 - 3 -2 = 120 dimensions. This is obviously the maximum number of dimensions for a
splitting field of afifth degree polynomial.

4. Field Automorphisms

Once we have defined the splitting field for a polynomial, we can ask what automorphisms exist on this field.
It is not hard to prove that the automorphisms must send one root of the polynomial to another root. (See[1,
p. 282].) Furthermore, the automorphism will be completely determined by where the automorphism sends
the roots of the polynomial. Thus, we can view any automorphism on the splitting field as a permutation of
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the roots of the polynomial.

How can we determine whether a given permutation of the roots represents an automorphism? We can have
Mathematica help us! Let us choose the polynomia X® — 5X + 12 toillustrate the process.

Cl ear Def s
Define[a”5, 5a - 12]
Factor [X*5 - 5 X + 12, a]

5a a? a® a* 3aX azx a®Xx a*X
(-a+X) |12- — - — - — - — + X+ - — - + X2
4 4 4 4 4 4 4 4
a ad aX azx a¥x a*X
-1-—- — - X+ —+ + + +X2J
2 2 4 4 4 4

We can let b be aroot of the last factor, and try the factorization again.
Define[b”2, 1 +a/2 +a”*"3/2 +b -ab/4 -a*2b/4 -a*3b/4 -ar4b/4]
Factor [X"5 - 5X + 12, a, b]

a a? a® a*
(-a+X) (-b+X) |[-1+—+ —+ —+ —+b+X
4 4 4 4

3 a a a® a* b ab
—t = — - — - — - — - — %

2 4 4 4 4 2 2

-—+—+ —+ —+X

2 2 2 2

SRR

It isnatural to label the three other roots of this polynomial asc, d, and e.
c=1-a/4-a”*"2/4 -a”*3/4 - a*4/4 - b;
d=-3/2-a/4+a”"2/4 +a"3/4+a”*4/4 +b/2 +aby/2;

e 1/2 -a/2-b/2 -aby/2;

In order to define an automorphism on this splitting field, we only have to define where a and b are sent to,
and the other three roots will follow suit. It is easy to define a homomorphism in Mathematica. The following
creates the command Homomor ph[F] which defines F to be a homomorphism.

Homonor ph[F_Synbol ] : = Moddul e[{a, b},

UsedSynbol s = Union[UsedSynbol s, {F}];

CearAll [FI;

Fla_b_1 : = FixedPoi nt [Expand, F[a] F[b]1;

Fla_ + b_] := F[a] + F[b];

Fla_"b_lInteger] : = Fi xedPoi nt [Expand, F[a]”"b];
F[a_Integer] : = ga;

Fla_Rational ] := a;]

For example, we can easily define a homomorphism which sends a to b, and sends b back to a.

Homonor ph [F]
Flaj := b
F[b] : = a

The command CheckHomo in the package "galois.m" can confirm for us that thisis indeed a homomorphism
onQ(a, b).
CheckHono[F, {a, b}]

True

We can a so have Mathematica graph this homomorphism on the set of five roots.
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GrcleGaph[{a, b, c, d, e}, FI;

[< t]

d c

Not every choice of F[a] and F[b] will produce an automorphism;

Homoror ph [F]
Flaj := b
F[b] := ¢

CheckHono [F, {a, b}]
fb] « f[b] is not equal to f [bxb]
Fal se

yet it is not hard to find automorphisms that do work. These become theelements of the Galois group. Thus,
Mathematica allows us to visualize the different automorphisms of the Galois group of the polynomial. Here
is another example.

Honomor ph [F]
Flal := a
F[b] := ¢

CheckHono [F, {a, b}]

True
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GrcleGaph[{a, b, c, d, e}, FI;

a

®

1l

d c

From these two elements of the Galois group, we can actually produce the entire Galois group of
X5 — 5X + 12. Wewill develop aquick way to produce these elements in the next section.

5. The Galois Group of a Polynomial

Now that we are able to discover some of the elements of the Galois group, the natural step would be to use
these elements to produce the whole Galois group of a polynomial. If we number the roots of the polynomial,
we can view each element of the Galois group as a standard permutation.

For example, the roots of the polynomial X5 — 5X + 12 can be numbered a=1, b=2, c=3, d =4, and
e= 5. Then the two automorphisms discovered in the last section could be viewed as the permutations |

12345 12345
(21435) (13254)'

These permutations can be entered into Mathematica using only the bottom row of the permutation.

P[2, 1, 4, 3, 5]

P[2, 1, 4, 3]

P[1, 3, 2, 5, 4]

P[1, 3, 2, 5, 4]

Here, the P stands for "permutation.” Notice that if the last number is sent to itself in the permutation, it is

omitted to save space. We can multiply two permutations using Cent er Dot for the non-commutative
multiplication.

P[2, 1, 4, 3] - P[1, 3, 2, 5, 4]
P[2, 4, 1, 5, 3]

The Group command, which was described in [4], is also in the "galios.m" package. Thus, we can find the
subgroup of S; generated by these two permutations as follows:
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Goup[{P[2, 1, 4, 3], P[1, 3, 2, 5, 4]}]

{P[1, P[2, 1, 4, 3], P[1, 3, 2, 5, 4], P[3, 1, 5, 2, 4], P[2, 4, 1, 5, 3],
P[4, 2, 5, 1, 3], P[3, 5, 1, 4, 2], P[5, 3, 4, 1, 2], P[4, 5, 2, 3, 1], P[5, 4, 3, 2, 1]}

Since the splitting field of X® — 5X + 12 is 10 dimensional, we would expect the Galois group to have 10
elements. Since Mathematica has found 10 elements in the Galois group, we have found all of them.

Which group is thisisomorphic to? It is obvious that none of these elementsis of order 10. Thus, the group
cannot be isomorphic to Z;o. The only other group of order 10 is Ds, so this group isisomorphic to Ds. Note
that [5] claimsthe Galois group is F»g, Which iswrong.

Let us try one more example---the polynomial X8 — 24 X% + 144 X* — 288 X2 + 144. We can first note
that this polynomial isirreducible over the rational numbers.

Cl ear Def s

Factor [X?8 - 24 X"6 + 144 X4 - 288 X2 + 144]

144 - 288 X2 + 144 X+ - 24 X8 + X8

We can define a to be aroot of this polynomial, and factor it over Q(a).
Define[an8, 24a"6 - 144a"4 + 288a”2 - 144]

Factor [X?"8 - 24 X"6 + 144 X4 - 288 X2 + 144, a]

3a® ad 3a® a° 17a® 11a® a’
(-a+X) (a+X) |-3a+ - —+X [38. +—+X] 10a - + - —+X
2 12 2 12 2 6 12
5a8 5a% a’ 5a8 5a% a’ J[ 17a% 11a%> a’ J
-a- + - — +X| |a+ - +—+X| |[-10a+ - +—+X
2 6 24 2 6 24 2 6 12

As we can see, the polynomial factors completely in Q(a). The roots can be given as +a, +b, +c¢, and +d,
where

b =a+5a”"3/2 -5a”5/76 + a7/ 24,
c

d

3a-3a”3/72 + ar5/12;

10a - 17a*3/2 + 11a*5/6 - a*7/12;

which are all expressed in terms of a. Thus, an automorphism of the splitting field will be completely deter-
mined by which root a is sent to. Suppose that aissent to b.

Honoror ph [F]
Fral := b
CheckHono[F, {a}]

True
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CrcleGaph[{a, b, c, d, -a, -b, -c, -d}, FI;

a

-d b

A
< / e

-b I—-ld

-a
We can also consider ahomomorphism which sendsa to c.
Homoror ph [F]
Flay :=c
CheckHono [F, {a}]
True
CrcleGaph[{a, b, c, d, -a, -b, -c, -d}, FI;

a

RN
AN
AW

-a

If we lable the roots of the polynomial in the order that they appear in these circle graphs, we find that the
first permutation of the roots corresponds to the permutation P[2,5,8,3,6,1,4,7], while the second automor-
phism can be expressed by the permutation P[3,4,5,6,7,8,1,2]. Hence, we can find

more automorphisms by considering the group generated by these two elements.

G = Goup[{P[2, 5, 8, 3, 6, 1, 4, 71, P[3, 4, 5,6, 7, 8, 1, 2]}]

{P[1, P[2, 5, 8, 3, 6,1, 4 7], P[7, 8,1, 2, 3, 4 5, 6],
P[8, 3, 6, 1, P[5, 6, 7, 8, 2, 3, 4],
6, 8, 1,

1, 4,7, 2, 5], 1,
P[6, 1, 4, 7, 2, 5, 8, 3], P[3, 4, 5, 7, 2], P[4, 7, 2,5, 8, 3, 6, 1]}
Ilal d

The package "galois.m" also includes a command M ultTable which allows us to see the Cayley table of this
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group of permutations.

Mul t Tabl e[G];

P@D
P@2,5,8,3,6,1,4,7D
P@7, 8,1, 2,3,4,5,6D
P@s, 3,6,1,4,7,2,5D
P@s, 6,7,8,1, 2, 3,4D
P@6, 1,4,7,2,5,8,3D
P@3, 4,5,6,7,8,1,2D
P@4,7,2,5, 8, 3,6, 1D

Mathematica uses a color code for the elements, which is shown here as shading. By comparing this table
with the 5 known groups of order 8, we see that the Galois group of X8 — 24 X5 + 144 X4 — 288 X? + 144
is

isomorphic to the quaternionic group, Qg. Hence, we can use Mathematica to find the Galois groups of fairly
complicated polynomials.

By having a visualization of the Galois groups, students have an easier time grasping the fundemental
theorem of Galois theory. From this point, it is not hard for the students to learn the many consequences of
Gadloistheory, such as the insolvability of fifth degree polynomialsin terms of radicals.
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