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Abstract. This paper first criticizes Church’s and Turing’s proofs of the undecidability
of FOL. It identifies assumptions of Church’s and Turing’s proofs to be rejected, justifies
their rejection and argues for a new discussion of the decision problem.
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1. Introduction

First-order logic without names, functions or identity (FOL) is the simplest first-order
language to which the Church-Turing theorem applies. I have implemented a decision
procedure, the FOL-Decider, that is designed to refute this theorem. The implemented
decision procedure requires the application of nothing but well-known rules of FOL. No
assumption is made that extends beyond equivalence transformation within FOL. In this
respect, the decision procedure is independent of any controversy regarding foundational
matters.

However, this paper explains why it is reasonable to work out such a decision procedure
despite the fact that the Church-Turing theorem is widely acknowledged. It provides a cri-
tique of modern versions of Church’s and Turing’s proofs. I identify the assumption of each
proof that I question, and I explain why I question it. I also identify many assumptions
that I do not question to clarify where exactly my reasoning deviates and to show that
my critique is not born from philosophical scepticism. My critique, for example, does not
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apply to Gödel’s incompleteness proof of Peano Arithmetics (PA) nor does it question the
axiomatic method in general. Instead, it is directed against the possibility of expressing a
decision function for FOL in a language based on FOL. I argue that any indirect undecid-
ability proof for FOL is underdetermined, because rather than reducing the hypothetical
decidability assumption to absurdity one can instead reduce to absurdity the assumption
that the translation of such a decision function into the language of FOL indeed expresses
the decision function.

2. Critique of Church’s Proof

2.1. Church’s Proof. In the following, I refer to modern versions of Church’s proof.1

Church’s undecidability proof of FOL rests on the proof that the property of provability in
Robinson’s arithmetic (Q) is undecidable. Q is based on seven axioms concerning properties
of natural numbers, addition and multiplication; [Smith (2013)], p. 67, lists these axioms.
The inference rules of Q are the rules of FOL= (FOL including identity, names and function
symbols). The language of Q, LA, is based on the language of FOL= and includes the
arithmetic expressions 0, S (successor), + (addition), and × (multiplication) in addition to
the logical constants of FOL=. In contrast to FOL=, the language of Q does not contain
any vocabulary that has no fixed interpretation (such as names or predicates). The only
predicate is equality (=), and objects are all denoted by 0 and the successor function S. In
the following, I take it for granted that LA is interpreted using its standard, fixed arithmetic
interpretation =A and that Q is sound in relation to this interpretation.

Church argues that if FOL is decidable, then Q is decidable. The proof of this impli-
cation is based on (i) the translation of LA-formulas into FOL formulas while preserving
satisfiability and (ii) the deduction theorem applied to the seven axioms of Q.2 I do not
doubt this proof, and thus, I do not doubt that decidability of FOL implies decidability of
Q. The translation rules that eliminate function symbols as well as identity are defined by
[Boolos et al. (2003)], chapter 19.4. These authors prove the correctness of the translation
procedure by proving their propositions 19.12 and 19.13 (cf. [Boolos et al. (2003)], pp. 256
and 257). I have implemented this procedure as an additional tool in the FOL-Decider.
Since I claim the decidability of FOL, I therefore also claim that it is decidable whether a
given LA-formula is provable in Q.

The claim that provability in Q (Q-provability for short) is decidable, of course, does
not imply that Q is negation-complete. Indeed, it is well known that Q is Π1-incomplete;
∀x(0 + x = 0) is a trivial example that is true according to =A but not provable in Q (cf.
[Smith (2013)], Theorem 10.8, p. 69.). A decision procedure for Q makes it possible to
prove the incompleteness of Q without any semantic or meta-mathematical reasoning. All

1For convenience, I will restrict the presented references to [Smith (2013)]. Other versions of Church’s
proof do not significantly differ with respect to my critique. [Smith (2013)] proves Church’s theorem on p.
303. One favourable aspect of his book is that he nicely identifies and proves the underlying assumptions of
Church’s theorem.

2The deduction theorem applied to the seven axioms states the following equivalence:

{Axiom 1, . . . ,Axiom 7} ` A iff ` Axiom 1 ∧ . . . ∧Axiom 7→ A

.
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that must be done is to prove for some formula A, e.g., the Π1-formula ∀x(0 + x = 0), that
neither A nor ¬A is provable from the axioms of Q by applying the decision procedure.3

Before considering the proof of the undecidability theorem for Q, let me first introduce
some useful terminology.

According to Church’s thesis, every decision procedure can be defined in terms of a
total µ-recursive function. In the following, I will speak of “recursive functions” for brevity.
As I will argue in section 2.3, the use of the term “function” is not without presuppositions.
Since recursive functions are computable, one can think of the values of recursive function
as outputs of and the arguments as inputs to a computation. The peculiarity of recursive
functions is the way in which they can be defined, namely, by a chain of definitions by
means of composition, primitive recursion and minimization from a set of initial functions
(the zero, successor and identity functions) (cf. [Smith (2013)], chapter 38, p. 287). The
details of defining recursive functions, however, are not relevant to my critique.

In the following, I use Smith’s terminology for the important distinction between ex-
pressing and capturing a property, relation or function (cf. chapter 5, p. 41 to 44). I apply
his general definitions to LA, =A and Q:

Definition 2.1. A property P is expressed by the open well-formed formula (wff) ϕ(x)
with one free variable in LA iff, for every n,

(i) if n has the property P , then ϕ(n) is true according to =A, and
(ii) if n does not have the property P , then ¬ϕ(n) is true according to =A.

Definition 2.2. Q captures the property P by means of the open wff ϕ(x) iff, for any n,

(i) if n has the property P , then Q ` ϕ(n), and
(ii) if n does not have the property P , then Q ` ¬ϕ(n).

In place of “open formula”, I will also use the term “propositional function” to empha-
size that open formulas are correlated with an intended interpretation. n is the represen-
tation of n in LA. The definitions are applied to the properties of expressions (instead of
properties of numbers) by means of referring to expressions (terms, formulas or sequence
of formulas) by their Gödel numbers. The definitions of expressing relations and functions
are similar to that of expressing properties. The same applies to capturing relations and
weakly capturing functions. Weakly capturing functions does not require to capture that
the value of a given argument is unique (= capturing a function as a function or, in short:
capturing a function). To fulfil this requirement, the following stronger definition is needed
(cf. [Smith (2013)], p. 119):

Definition 2.3. Q captures the one-place numerical function f by means of the open wff
ϕ(x, y) iff, for any m, n,

(i) if f(m) = n, then Q ` ϕ(m,n), and
(ii) Q ` ∃!yϕ(m, y).

3The translation of Goldbach’s conjecture, also a Π1-formula GC (cf. [Smith (2013)], p. 78), may serve
as a less trivial example assuming that the conjecture is true according to =A and not provable in Q. The
decision of the Q-unprovability of the negation of Goldbach’s conjecture, which is a Σ1-formula, would prove
its truth due to the Σ1-completeness of Q. Unfortunately, the FOL-translation of the formula Q → ¬GC,
NUN090+1 of the Thousands of Problems for Theorem Provers (TPTP) library, is too complex to apply
the FOL-Decider (cf. figure 1, p. 10 for a formula of similar complexity and section ?? for the status of the
FOL-Decider). We can hope that future improvements to the FOL-Decider will make it possible to apply
the FOL-Decider to formulas of such complexity.
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Note, that (i) and (ii) imply if f(m) 6= n, then Q ` ¬ϕ(m,n). (ii) satisfies the unique-
ness condition. The definition can be trivially extended to n-place functions.

For brevity, I often refer merely to expressing and capturing properties without men-
tioning relations or functions. I will also tacitly identify the talk of deciding, expressing and
capturing properties (relations) with deciding, expressing and capturing their characteristic
functions (cf. [Smith (2013)], chapter 2.2, p. 9f., p. 18, Theorem 5.1, p. 43, p. 107).

The Diagonalization Lemma states that for any open formula φ(x), some formula γ
exists such that the following formula can be proven in Q: γ ↔ φ(dγe), where dγe refers
to the Gödel number of γ. I call the diagonalization of a propositional function ¬φ(x)
the “diagonal case”. In particular, I call ¬P (dγe) the diagonal case of P (x), where P (x)
abbreviates the propositional function that would express and capture a presumed decision
procedure for FOL- and consequently, Q-provability.

The proof that Q is undecidable is based on the following premises:

(1) Q is consistent;
(2) any decision procedure can be defined in terms of a total recursive function (Church

thesis);
(3) if Q-provability is decidable by a recursively defined characteristic function, then

this function can be expressed in the language LA and, moreover, captured in Q;
(4) the Diagonalization Lemma (cf. [Smith (2013)], Theorem 24.4, p. 181); and follow-

ing from this Lemma
(5) the theorem that Q-provability cannot be captured in Q (cf. [Smith (2013)], Theo-

rem 24.8, p. 183).

Since the Diagonalization Lemma applies to any propositional function, it also applies to
P (x) (cf. [Smith (2013)], Theorem 24.3, p. 180). The assumption that Q-provability can be
captured in Q results in deriving a contradiction in Q in the diagonal case ¬P (dγe) (cf. the
proof of Theorem 24.8 in [Smith (2013)], p. 183). Since Q is assumed to be consistent one
must conclude that Q-provability cannot be captured in Q. I doubt neither this theorem
nor the Diagonalization Lemma. Thus, I neither doubt (4) nor (5). However, I will question
that Q-provability can be captured in Q by questioning (3).4

(1) is not only presumed in the reasoning for (5) but also for (3): If Q were not
consistent, the notion of capturing would be reduced to absurdity. Moreover, Church’s
proof intends to prove that a contradiction is derivable in Q if FOL-provability (and thus,
Q-provability) were decidable and could consequently be captured in Q. Therefore, one
can only reduce the assumption that FOL-/Q-provability is decidable to absurdity if Q
is assumed to be consistent. (2), the Church thesis, makes it possible to refer in (3) to
a procedure for translating decision functions defined in terms of recursive functions into
propositional LA-functions. Taken together, (1) to (3) imply that decidability of Q implies
the possibility of capturing the presumed decision function within Q. This implication
contradicts (5), which presumes (4). Therefore, the hypothetical assumption that Q is
decidable can be reduced to absurdity on the basis of (1) to (5).

4The Diagonalization Lemma is based on the “capturing theorem”, which states that any primitive re-
cursive function can be captured in Q (Theorem 17.1 in [Smith (2013)], p. 125). I doubt this theorem in
the case of Q- or FOL-provability. However, in the proof of the Diagonalization Lemma, Theorem 17.1 is
applied only to diagonalization as a primitive recursive function. I do not doubt that this primitive recursive
function can be captured in Q.
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Since my critique is related to (3), let me spell out the premises of (3) in more detail
to precisely identify the assumption (or “theorem”5) to which my critique relates. Then, in
section 2.4, I will explain the reasons for my critique.

(3) is based on the general theorem that every recursive function can be captured
in Q (cf. [Smith (2013)], Theorem 17.1, p. 125, for primitive recursive functions and
[Smith (2013)], Theorem 39.2, p. 298, for recursive functions in general). I call this theorem
the “capturing theorem”. The proof of this theorem rests on the following premises:6

(α) the theorem that every recursive function can be expressed in LA (cf. [Smith (2013)],
Theorem 15.1, p. 113 and [Smith (2007)], p. 277f. or [Smith (2013)], p. 297 for
minimization),

(β) the theorem that the specified translation procedure for translating recursive func-
tions results in propositional Σ1-functions in LA (cf. [Smith (2013)], Theorem 15.2,
p. 118, p. 297 and [Smith (2007)], p. 277f.),

(γ) the theorem that Q is Σ1-complete (cf. [Smith (2013)], Theorem 11.5, p. 79), and
(δ) the theorem that Q is strong enough to ensure that if a function f is captured in a

weak sense by a propositional function ϕ, then there is a function ϕ̃ that captures
f as a function (cf. [Smith (2013)], Theorem 16.2, p. 120).

This proof applies to properties P by representing properties by their characteristic functions
cP (cf. [Smith (2013)], Theorem 15.3, p. 118 and Theorem 16.1, p. 119). So, in fact, in
the case P does not hold, the Π1-formula ¬ϕ(n) is equivalent to the formula expressing
¬cP (n) = 0, which is equivalent with and derivable from the Σ1-formula expressing cP (n) =
1. Expressing and capturing a property, thus, is reducible to Σ1-formulas not only in the
positive case, in which the property holds but also in the negative case, when it does not
hold. In general, expressing and capturing total recursive functions can be reduced to
Σ1-formulas.

δ is needed to ensure that the requirement to capture a function as a function is fulfilled,
which is needed to infer that a property is captured by Q if its corresponding function is
captured by Q (cf. the proof of Theorem 16.1 in [Smith (2013)], p. 119f.).

I call (α) the “expressing theorem”. If it were not assumed, then the Σ1-formulas re-
sulting from the translation procedure for a property P in question were not correlated
with P . I question neither (β) to (δ) nor that Theorem 17.1 can be inferred from (α) to
(δ). I do not question (β) because I take this theorem to merely state that the specifica-
tion of the general translation procedure for recursive functions results in LA-propositional
functions of the rather simple Σ1-type (i.e. propositional functions preceded by a sequence
of unbounded existential quantifiers followed by an expression with no further unbounded
quantifiers). This procedure is presumed for (α). However, (α) additionally states that
the resulting propositional Σ1-function indeed expresses the recursive function in question.
This is what I question in the case of a recursive characteristic function for FOL-provability
and, consequently, for Q-provability. The rejection of premise (3) above follows from this
rejection of the possibility to express FOL-provability in LA.

5Henceforth, I will no longer use quotation marks to qualify acknowledged theorems that I am questioning.
6I follow the proof strategy of the first edition [Smith (2007)] (as well as [Boolos et al. (2003)], chapter

16.2), which bases the proof of the capturing theorem on the Σ1-completeness. This makes clear that my
critique applies already to the weaker expressing theorem (given Q’s soundness in respect to =A, which I do
not question). It should be noted that the proof of the capturing theorem in [Smith (2013)] also makes use
of the Σ1-completeness of Q.
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Let me further specify what is in question. The proof of the expressing theorem is
based on the specification of a translation procedure that translates recursive functions into
propositional Σ1-functions in LA (cf. (β) above and section 2.4 below). I do not doubt that
this procedure is well defined and results in propositional Σ1-functions in any case. Such a
translation procedure is itself recursively definable (and, thus, computable). However, the
question is whether the translation procedure is correct in the case of a recursively defined
decision procedure for FOL. More specifically, the question can be formulated as follows:
given that the propositional Σ1-function P (x) translates the decision procedure for FOL-
/ Q-provability, is it indeed the case that for all n, if n is the Gödel number of a provable
FOL formula, then P (n) is true according to the standard arithmetic interpretation =A

of LA, and if n is the Gödel number of an unprovable FOL formula, then ¬P (n) is true
according to =A? The positive answer to this question claims a universal proposition that
even applies to the hypothetical diagonal case ¬P (dγe) that expresses its own unprovability
according to its meta-mathematical interpretation.

In contrast to the syntactic notion of capturing, the notion of expressing is a semantic
notion. Thus, the question arises of how one can prove the correctness of a procedure for
translating a recursively defined decision procedure for FOL into a propositional function
P (x) in LA. I will argue that the proof of the expressing theorem does not provide a
satisfiable answer in the case of FOL-provability.

For now, it is sufficient to state what is at issue; the details of the critique will be
presented later in section 2.4. The decision problem is the problem whether it is possible
to define an algorithm that applies the rules of a correct and complete FOL calculus such
that the proof search can determine not only provability but also unprovability for FOL
formulas. A positive answer does not deal with expressing such an algorithm within FOL.
Thus, it is another and prima facie completely different kind of question whether one can
express and, moreover, capture such an algorithm by means of a propositional LA-function
P (x) such that for any Gödel number n of a provable FOL formula, the LA-formula P (n) is
true according to =A and provable in Q, whereas for any Gödel number n of an unprovable
FOL formula, the LA-formula ¬P (n) is true according to =A and provable in Q. An answer
to this question applies meta-mathematical proof methods not needed in the case of positive
answer to the decision problem. Church’s proof presumes that the answers to these two
questions must be coextensive. I will argue that this is not proven, in contrast to what is
purported.

Let me list the specific assumptions of Church’s proof that one can most reasonably
doubt:

Assumption 1: the consistency of Q,
Assumption 2: Church’s thesis, and
Assumption 3: the assumption that decidability of FOL implies the existence of

a propositional function P (x) that expresses FOL-provability in the language LA

(even in the diagonal case).

In the following sections 2.2 and 2.3, I explain why I do not question Assumption 1 or
2. Section 2.4 then explains why I do question Assumption 3.

2.2. Consistency of Q. Certain types of finitism question Assumption 1 insofar as they
neither accept semantic consistency proofs of Q nor relative consistency proofs, such as
Gentzen’s or Gödel’s consistency proof of the stronger theory PA. To date, no absolute or



CRITIQUE OF THE CHURCH-TURING THEOREM 7

finitistic consistency proof of Q has been presented. Instead, since (i) Q presumes quantifica-
tion over an infinite domain (which may be understood as implying an illegitimate reference
to the extensional infinite or to infinity at all) and (ii) the Diagonalization Lemma holds
in Q (which may be understood as causing antinomies), a certain finitistic attitude may
question the consistency of Q, which gives rise to attendant reservations against Church’s
proof.7

I do not question Assumption 1. First of all, I take it for granted that Q is sound in
relation to =A. Since consistency follows from soundness, this is an even stronger assumption
than consistency. Of course, one can object that the soundness, like the consistency, of
Q is not rigorously proven in accordance with the strict standards of a certain finitist
point of view that eschews any semantic notions extending beyond computing symbols.
Furthermore, there are also good reasons to argue for alternative semantics of arithmetic
propositions. This, in turn, calls for alternative calculi, e.g. intuitionistic logic or even pure
mathematical calculi that do not make use of logical constants. However, my critique is
independent of any specific conceptualization of arithmetic. It takes LA and Q as well as
FOL for granted and questions that a decision procedure for FOL can be expressed in a
language based on FOL. It is rather the conceptualization of a decision procedure for FOL
in FOL that is questioned in the first place than that of arithmetic.

Instead of questioning Q’s consistency, I conjecture that it is possible to prove the
consistency of Q by applying the implemented decision procedure for FOL. Deciding the
conjunction of the FOL translations of Q’s axioms, NUM009+0.ax in the TPTP library, to
be non-refutable (satisfiable) proves their consistency. Such a proof results from a purely
syntactic decision procedure that relates to nothing but FOL (plus the standard elimination
of functions and identity) and thus is an absolute consistency proof that may serve as a
finitistic consistency proof. At present, merely the complexity of the formula in question,
the lack of exploitation of optimization strategies and the limits of the hardware make it
impossible to provide such a proof by running the FOL-Decider program. However, one
may hope that future improvements of the FOL-Decider will make such proofs possible.
For now, my claim may serve as a conjecture for future verification. Currently, powerful
existing semi-deciders such as Vampire can already verify that significant minimal changes
to the axioms of Q can be proven to result in either inconsistent axioms (“strengthening”)
or axioms with finite models (“weakening”). In particular, such verification is possible
for the case of varying the FOL translation of axiom 3 that replaces the inductive axiom
schema of PA. Such behaviour is typical of satisfiable axioms that have complicated (and,
in particular, infinite) models. Nevertheless, for the following, it is sufficient to distinguish
my critique of undecidability proofs from doubts concerning Assumption 1.

2.3. Church’s Thesis. Church’s thesis (i.e., Assumption 2) is, as is often emphasized,
admittedly a thesis and not a theorem. If it is taken to be a formal explication of the informal
concept of mechanical computation, it cannot be proven rigorously. Originally, Church and

7[Rodych (1999)], for example, explains Wittgenstein’s rejection of undecidability proofs in relation to (i);
my paper [Lampert (2018a)] offers an alternative explanation. [Guman̆ski (1988)] blames proofs in which the
diagonal method is applied. Therefore, he also rejects Church’s theorem. To my knowledge, Guman̆ski was
the first to also present a detailed argument for the decidability of FOL by defining upper limits for proofs
in Beth’s tableaux calculus (cf. [Guman̆ski (2000)] and [Guman̆ski (2008)]). My reasoning for questioning
the Church-Turing theorem and my decision procedure are inspired by Wittgenstein and are independent of
Guman̆ski.
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Turing thought of computation carried out by humans with paper and pencil according to
some given routine. However, the relevant question today is whether a decision procedure
for FOL can be written in some prevalent computer language. The significance of the
Church-Turing theorem is that nobody seeks for such a program because it is believed that
the decision problem has no positive solution. The FOL-Decider, written in Mathematica,
intends to refute the Church-Turing theorem; the relevant question is whether this program
somehow goes beyond what could be defined by recursive functions or Turing machines.
So, I take the Church-Turing thesis to state that any program that decides a computable
problem can be defined in terms of recursive functions (Church’s thesis) or, alternatively,
in terms of Turing machines (Turing’s thesis). I do not question that. Given that the
Church-Turing thesis merely states the possibility that typical program code (such as the
Mathematica code of the FOL-Decider) can be reduced to a certain kind of simplest program
code, this statement can be verified in the case of the FOL-Decider. I do not presume any
idiosyncratic understanding of decidability, and I have no doubt that my decision procedure
can be redefined in the language of either recursive functions or Turing machines. This
reduction is itself computable.

However, Church’s or Turing’s thesis is sometimes said to state that any computable
function can be spelled out in terms of a specific kind of number-theoretic function. This
conception implies a general, extensional understanding of “functions”, which are most
often defined in set-theoretic terms (and not as computations of output from initial input,
which are merely understood as functions of a specific kind), and it further interprets
program code in terms of functions that generate mappings from natural numbers to natural
numbers. Such syntax and semantics are presumed in the course of proving the expressing
theorem since this proof relates recursive functions to propositional functions that express
the former in accordance with the standard set-theoretic arithmetic interpretation of LA

(cf. the following section 2.4). The interpretation of recursive functions as extensional
number-theoretic functions, however, is neither trivial nor insignificant since all that, in
fact, occurs in computing is the manipulation of certain symbols (e.g., sequences of digits
such as 0, S0, etc., or of strokes on a tape) in accordance with rules of a specific form (i.e.,
rules that can be defined by recursion or by the instructions of Turing machines). When
this process is understood in terms of a specific type of number-theoretic function, doing so
requires interpretation involving theoretical conceptualization.

The all-important point underlying my critique is that such a conceptualization begins
to reformulate the language of computation (i.e., program code) as a language based on a
general, extensional understanding of functions that paves the way towards the application
of logical syntax by means of its set-theoretic or, more generally, extensional semantics.
However, I do not consider the interpretation of Turing-computable “functions” or recursive
“functions” as a specific type of number-theoretic functions to be an essential part of the
Church-Turing thesis. Instead, I interpret this thesis merely as a thesis concerning the
possibility of reducing typical program code to simplified program code of a certain kind
(namely, in terms of recursive definitions including minimization or in terms of Turing
machines). According to this understanding, the Church-Turing thesis is a thesis concerning
the reduction of computer languages to most simplified computer languages. The syntax
of a language of computation is simply the syntax of program code or, more specifically,
the syntax of the corresponding recursive definitions or Turing machines, and the semantics
of such a language is given by the paraphrases of these definitions in terms of instructions
for generating and manipulating symbols. The relation to the syntax and semantics of a
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language based on FOL is a separate question that should not be confused with the Church-
Turing thesis. It is this relation that is at issue in Assumption 3 – the assumption that I
intend to refute with my work.

2.4. The Problem of Translation. Assumption 3 is not considered on its own in Church’s
proof. Instead, it is inferred from the expressing theorem. This theorem states that any
recursive function is expressible by a propositional function in LA. The question is whether
the proof of the expressing theorem, in fact, applies to a presumed recursive function for
FOL-provability. I argue that this is not the case as follows:

Step 1: The proof of the expressing theorem presumes a number-theoretic extensional
interpretation of recursive functions and relates this interpretation to the arithmetic
interpretation =A of propositional LA-functions.

Step 2: A recursive function for FOL-provability first and foremost presumes a logical
(or meta-mathematical) interpretation of a recursively defined decision procedure for
FOL: it refers to logical formulas and their properties. Thus, it must be assumed that
the arithmetic and meta-mathematical interpretations, =A and =M , are correlated in
the interpretation of recursive functions as well as their translation into propositional
functions.

Step 3: That this correlation holds in the case of diagonalizing the translation P (x)
of a presumed decision function for FOL-provability is questionable and does not
follow from the proof of the expressing theorem.

My critique does not concern the expressibility of known recursive functions comput-
ing arithmetic, logical or meta-mathematical properties. Instead, it questions only the
expressibility of the presumed decision procedure for FOL-provability (and, consequently,
properties that are reducible to FOL-provability, such as Q-provability). Thus, it does not
concern step 1 and it does not question in general the assumption of step 2 that =A and
=M are correlated. It merely questions the validity of this assumption in the special case
of expressing a decision function for FOL-provability in the diagonal case.

2.4.1. Step 1 – Comparing Arithmetic Interpretations. The proof of the expressing theorem
for recursive functions proves the theorem for the initial functions, for the composition of
recursive functions, for primitive recursion and for minimization. The main part of the proof
consists of specifying the procedure for translating recursive functions into propositional Σ1-
functions. The key is to define such a translation for recursion by encoding recursion in
terms of the β-function. Such a translation procedure is not trivial. As an example, one
may consider the translation of the primitive recursive factorial function into a two-place
propositional Σ1-function that expresses x! = y in LA and captures it in Q (cf. Table 1)8.

One can ensure that the factorial function is also captured by Q by (i) instantiating
values for x and y in the LA formalization and (ii) deriving the corresponding formulas in
the case that these values satisfy the factorial function and deriving their negation in the
case that these values do not satisfy the factorial function.

The FOL formula shown in Figure 1 is equivalent to substituting S[0] for x and y, trans-
lating the result into a pure FOL formula φ without identity, translating the seven axioms of
Q into a pure FOL formula ψ without identity and generating the formula ¬(ψ → φ). This

8This translation was generated by implementing the definitions given in [Smith (2013)], p. 72, p. 116
and p. 117.
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Recursive Def. LA Formalization

0! = 1

(Sx)! = x!× Sx

Table 1: Translation of the Factorial Function into a Propositional LA Function

formula should be refutable if the whole translation procedure is correct. Unfortunately,
no modern logic engine from the TPTP site (including the FOL-Decider) is able to refute
this formula due to its complexity.9 This example illustrates the difficulty of controlling the
relevant translation procedure, even with the best available logic engines.

Figure 1: ¬(FOL-translation(Q) ⇒ FOL-translation(LA-translation(S0! = S0)))

However, my point of critique does not concern the complexity of the translation pro-
cedure. I have no doubt that recursively defined arithmetic functions (such as the factorial
function) can be expressed and captured by the translation procedure (including the FOL

9Thanks to Geoff Suttcliffe for testing this with all engines from the TPTP-site with extended time limits.
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reduction). Rather, I question how it can be justified that such a procedure is correct in any
arbitrary case, including the hypothetical case of a recursive definition of FOL-provability.

Proofs of the expressing theorem do not explicitly address this question. Let me state
in advance that I do not advocate any sceptical or philosophically motivated critique of any
answer to this question in the following. For the sake of the argument, I take the underlying
semantics on which the translation procedure is based for granted. However, I argue that the
semantic reasoning cannot be generalized to the diagonalization of a propositional function
P (x) that is intended to express FOL-provability (i.e., the diagonal case of P (x)).

The question of the criterion for the correctness of the translation procedure already
arises in the case of the simplest translations of the initial functions. Smith’s proof of
the expressing theorem starts with proving the theorem for these functions. I quote the
complete proof for the successor and zero functions from [Smith (2013)], p. 110:

Proof for (1) There are three easy cases to consider:
i. The successor function Sx = y is expressed by the open wff Sx = y.

ii. The zero function Z(x) = 0 is expressed by the wff Z(x, y) =def (x = x ∧ y = 0).

In contrast to the tricky case of expressing recursion, the translation procedure is trivial
in the case of the initial functions. In this case, its correctness seems to be plain and unques-
tionable. However, it is interesting to note that the proof, in fact, consists of prescribing
how the functions are to be translated without explicitly stating why the translation is
correct. The answer to this question must relate the recursively defined functions to the
arithmetic interpretation =A of the propositional functions in LA. =A assigns truth values
to propositional functions for given instances of their arguments. The translation of a re-
cursively defined function f(x) = y into a propositional function φ(x, y) is correct iff for all
m and n, φ(m,n) is true according to =A iff f(m) = n (cf. [Smith (2013)], p. 43). How
can one know that this is the case?

To answer this question, one must answer the following questions: (i) How can one gain
knowledge of the truth values of φ(x, y) for specific values of m and n? (ii) How can one
know that the truth values of =A(φ(m,n)) correspond to the computation of f(m) = n?
(iii) How can one know the answers for all of the infinite number of possible values?

With regard to (i), one cannot refer to provability within Q to justify the truth value
of =A(φ(m,n)) since Q is justified by its soundness and the capturing theorem is based on
the expressing theorem: the syntax is measured by the presumed semantics, not the other
way round. So, one must simply accept truth values of LA-formulas according to =A as
primitive (as emphasized by [Smith (2013)], section 5.3). Let us accept this in the case
of =A for the sake of argument, although it is unsatisfying, at least from a philosophical
point of view. Furthermore, it should be noted that we do not know truth values of the
arithmetical interpretation =A of LA-formulas in non-trivial cases. Thus, we cannot justify
or control the translation procedure in such cases by independently comparing truth values.

The same applies regarding the second question. We might think of running a compu-
tation and comparing the result of what the computation does with the truth value of what
the corresponding LA proposition says according =A. However, let us ignore any specific
problems with this method since it cannot work because of (iii): it is obvious that we cannot
justify any general answer by controlling specific values.

What we, in fact, do in justifying the correctness of the translation procedure is to
relate paraphrases of the relation between x and y in the recursively defined function to
paraphrases of the LA expression φ(x, y). In doing so, strikingly, one also relates para-
phrases of the recursively defined functions in terms of number-theoretic (or arithmetic)
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extensional functions to the extensional understanding of the arithmetic interpretation =A

of the corresponding propositional LA-functions.10 In the “Proof for (1)” quoted above,
for example, Smith interprets Sx = y as the successor function and Z(x) = 0 as the zero
function: this is a number-theoretic interpretation since the values of the variables are
numbers, not symbols, and it is extensional since it does not matter how the values of the
functions are assigned to their arguments. Such an interpretation is, indeed, best suited
to be compared with the =A of the corresponding propositional functions. In the case of
Sx = y and Sx = y, one must judge that “y is assigned to the successor to x iff y is equal
to the successor of x” is true. In the case of the zero function, one must compare “0 is
assigned to x” and “x is identical to itself and y equals 0”. The translation is correct iff
the two paraphrases are coextensive. Note that the paraphrases depend on the syntax of
the paraphrased expressions and differ the more complex the expression to paraphrase is.
Image, e.g., paraphrases of the expression in Table 1. The similarity of the paraphrases in
the case of the successor function is an exception in this respect.

That paraphrases in the case of the initial functions are coextensive is, of course, rather
trivial and beyond doubt as soon as one takes the underlying semantics for granted. How-
ever, the implications of the method of evaluating the correctness of the translation are
important: the recursively defined functions to be translated are interpreted in light of the
arithmetic interpretation of LA propositions, and the “criteria” for correctness are judge-
ments concerning the coextensionality of arithmetic paraphrases. This method is not only
the implicit method used in the proof of the initial functions; the same method is applied in
the case of composition, recursion and minimization by Smith and in alternative proofs of
the expressing theorem. These proofs basically consist of defining how the primitive recur-
sive functions are translated, relying on the intuitive evidence provided by the arithmetic
interpretations of the related expressions. Smith, for example, ends his translation of the
factorial function into the formula given in Table 1 with the following emphatic statement:
“For this evidently expresses the factorial function” (my emphasis). Likewise,he ultimately
proves that the described procedure works in any arbitrary case by presenting the general
translation schema ϕ and asserting that “it is then evident that ϕ will serve to express
the p.r. defined function f” ([Smith (2013)], p. 118, my emphasis). And in the case of
minimization, he again simply defines how minimization is translated into Σ1-formulas by
simply ensuring that this “evidently expresses” ([Smith (2007)], p. 277, my emphasis)11 the
function defined by minimization. Smith’s proof is in no way less explicit than others, nor
does it differ in method from other proofs of the expressing theorem. On the contrary, his
proof is admirably clear and understandable.

Of course, a sceptic or a radical finitist may doubt such a method of justifying the
correctness of a translation procedure that is based on evidence concerning the coexten-
sionality of real or schematic paraphrases. One might object that this is not an acceptable
proof method in pure, rigorous mathematics. However, I do not advance such an argument,
nor do I doubt the correctness of translations of recursively defined arithmetic functions
(e.g., the factorial function) into LA expressions. It is evident that the translation is correct
from (i) placing all intermediate steps of the translation procedure in accordance with the
recursive definitions on one side and the compositional semantics of LA on the other and (ii)

10Cf. the “remarks about extensionality” by [Smith (2007)], pp. 29f., pp. 34f. and 35ff. and
[Smith (2013)], chapter 14.4.

11Cf. [Smith (2013)], p. 297: “Intuitively, F expresses f ; i.e. f(m) = n iff F (m,n) is true (think about
it!).”
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considering the comparability of arithmetic interpretations. If one is trained, one may even
be able to recognize the recursive definitions of the translated functions in the complicated
LA expressions.

In the following, the question is the extent to which this method can be generalized to
cases of recursively defined logical relations between formulas (not numbers).

2.4.2. Step 2 – Arithmetic and Meta-mathematical Interpretations. Given a computer pro-
gram for deciding FOL formulas, the intentions and paraphrases of its functions will most
likely be logical; one intends to manipulate logical formulas in accordance with syntactic
rules of logic with the purpose of identifying logical properties. Given the Church thesis,
these functions can be reduced to recursive functions, and a proper paraphrase of the re-
sulting recursive functions will still be logical or meta-mathematical. Assigning ‘0’ in the
final step, for example, might be paraphrased as assigning the value ‘provable’ to the initial
formula, which is given in the form of some binary code. How can one be sure that the
translation into a propositional function P (x) is still correct, such that this decision on
a logical property of formulas is, in fact, properly correlated with the truth values of the
corresponding arithmetic interpretation of P (x)?

The answer is that meta-mathematical properties can be expressed within LA via
Gödelization: “We yield an isomorphic image [...] in the domain of arithmetics” ([Gödel (1931)],
p. 174, footnote 9). Since we decode our expressions – terms, formulas, or sequences of for-
mulas – by means of signs of numbers, we can read functions between expressions as arith-
metic functions and thus correlate arithmetic interpretation with an meta-mathematical
interpretation. This statement applies to both the recursively defined functions and the
propositional functions that result from the translation procedure. Let us therefore dis-
tinguish an arithmetic interpretation =A from a meta-mathematical interpretation =M in
the case of recursive functions and their LA correlates. Now, we can again justify the
correctness of the translation procedure by going through it step by step and comparing
the corresponding paraphrases in terms of the interpretations =M and =A of the recursive
functions and LA expressions.

Let me illustrate the method of justification again by means of a simplest possible
example. Smith stipulates that even numbers are the basic codes for variables in LA.
The Gödel number for an expression is defined by taking the basic code number for each
individual symbol i of the expression as the exponent for the i-the prime number and then
taking the product of the results (1 ≥ i). Given this encoding, Smith proves that the
primitive recursive function “n is a variable” (V ar(n)) can be expressed in LA as follows
(cf. [Smith (2013)], p. 147):

Proof of (i) We just note that we can put

V ar(n) =def (∃x ≤ n)(n = 22(x+1)).

For the basic code for a variable always has the form 2n, for n ≥ 1, and the
g.n. [= Gödel number, T.L.] for a single expression is 2 to the power of that
basic codes.



14 LAMPERT

The propositional LA-function (∃x ≤ n)(n = 22(x+1)) can be interpreted according to =A.
However, Gödel numbering makes it possible to additionally read this formula as express-
ing a meta-mathematical property.12 The proof presents the propositional function that
expresses the recursively defined meta-mathematical property and justifies that this propo-
sitional function indeed expresses the recursive function by recalling the Gödel numbering
that lies at the heart of both =M (V ar(n)) and =M (∃x ≤ n)(n = 22(x+1))).

I do not doubt that the ability to express meta-mathematical properties works well
in the case of known recursive functions and their specified LA translations. This is the
case, for example, for “x is a PA-formula” or “y is a PA-proof of x” (abbreviated as
B(y, x)). One can justify the translations by explaining how, in fact, the conventions of
the stipulated Gödelization enforce arithmetic properties and relations that are, in turn,
expressed by propositional LA-functions. This can be illustrated by many examples, that
do not give rise to doubt that the paraphrases or intended interpretations are coextensive.

I also do not question that PA-provability can be expressed but not captured by exis-
tentially binding the variable y in the propositional function B(y, x) that captures “y is a
PA-proof of x” (cf. Definitions 45 and 46 in [Gödel (1931)], p. 186). My reasoning against
the undecidability proof of FOL does not question Gödel’s proof, which proves that his
Π1-formula G, i.e., the diagonal case ¬∃yB(y, dGe) of ∃yB(y, x), is undecidable in PA. As
Gödel himself remarks, ∃yB(y, x) is generated not by translating a total recursive function
but by existentially binding y in the propositional function B(y, x). Therefore, it cannot
be inferred that provability can be captured by ∃yB(y, x); it cannot be presumed that the
negative case of unprovability can be reduced to a positive, existential claim.

A decision function for FOL is a completely different entity than a procedure for decid-
ing, for a given sequence of formulas (or their Gödel numbers) and another formula (or its
Gödel number), whether the former is a proof of the latter (i.e. deciding “y is a FOL-proof
of x”). First of all, a decision procedure for provability must also decide unprovability.
According to the translation schema underlying the expressing theorem, a translation of
the decision that a formula is unprovable results not in a Π1-formula but in a Σ1-formula
(regardless of whether the translation is correct). More importantly, the strategy of a rea-
sonable decision procedure does not involve checking whether given Gödel numbers satisfy
the relation “y is a proof of x”. Once the decidability of provability is of concern, the
question is how to find a proof or disproof by means of an intelligent, fully automated
decision strategy. It will not be sufficient to check pairs of numbers by trial and error and
hope to serendipitously find a positive pair satisfying “y is a proof of x”. This is not a
reasonable search method in an infinite space, nor is it a reasonable procedure to identify
unprovability. Instead, the intent of a decision procedure for provability is to generate a
proof or disproof given a formula in question as input. What is looked for is a decision
criterion for provability that can be applied after a finite number of steps of manipulating
symbols; a criterion that allows one to decide on single instances of an infinite number of
candidates for proofs of a given formula φ does not provide such a criterion since it cannot
identify that φ is unprovable.

Gödel’s incompleteness proof must be clearly distinguished from Church’s proof. Gödel
does not hypothetically assume a recursive definition of “y is a PA-proof of x” but actually

12The recursive definition of the property of being a variable is not provided as part of the proof. (∃x ≤
n)(n = 22(x+1)) is not the result of a translation of the recursive definition. Being the result of a canonical
translation procedure is not a necessary condition for expressing a recursive function; it is only a sufficient
one.
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provides the recursive definition and its translation to a propositional function, abbreviated
by Gödel as B(y, x). On that basis, he specifies a concrete propositional function ∃yB(y, x)
that actually expresses “x is provable in PA” without capturing it. That ∃yB(y, x) does not
capture provability is not surprising. First of all, it depends on the strength of the axiomatic
system what can be captured by it. Furthermore, it is not surprising that general, univer-
sally quantified propositions are not provable within PA since logical quantification is not
based on induction but on quantifying over infinite sets, which involves an extensional un-
derstanding of infinity. Therefore, even though induction is implemented in PA in contrast
to Q, this does not imply that PA should be expected to be Π1-complete (which it is not
according to Gödel’s incompleteness proof). Universal quantification can only be proven
logically in non-trivial cases from universal axioms. That an axiomatic proof conception
cannot reduce all proofs of universally quantified propositions to a finite number of axioms
comes as no surprise; it simply shows the limits of a logical conceptualization of arithmetic.

In contrast, Church’s proof hypothetically assumes a recursive definition for FOL-
provability and its translation into a propositional function P (x) in LA. On this basis,
the assumption is reduced to absurdity that such a recursive function (and consequently,
its translation) exists. Not a concrete propositional function expressing what goes beyond
the realm of computation is at stake but expressing what is hypothetically assumed to be
computable within a language of logic that is not restricted to express what is computable
is in question. Similar to interpreting Gödel’s incompleteness proof as a proof of the limits
of an axiomatic proof conception, one may argue that it comes as no surprise that a decision
function for FOL is not expressible in LA since what is expressible depends on the syntax
of a language and, contrary to computer languages, propositional languages that are based
on FOL are not designed to express what is computable. However, instead of arguing this
way, Church’s proof questions the existence of a decision procedure for FOL rather than
questioning the expressiveness of FOL.

2.4.3. Step 3 – Underdetermination of Church’s indirect proof. As soon as one is considering
a decision procedure for FOL, or any other system based on the language and inference rules
of FOL, the situation becomes different to all positive and known translations of recursive
functions of meta-mathematical properties since now the reasoning is hypothetical and it is
intended to justify a reduction to absurdity of the assumption of FOL’s decidability. What
is at issue is not the translation of a specific given decision function; instead, it is argued
that it is impossible to define such a function. To do so, it must be presumed that the
expressing theorem holds not only in the positive and justified cases of recursive definitions
of meta-mathematical properties but also in the hypothetical case of FOL-provability.

This is true only if the arithmetic and meta-mathematical interpretations are also iso-
morphic and coextensive in this case. However, this cannot be judged since in this case, no
translations are available to be compared. There is no intuitive evidence that paraphrases
may also be coextensive in this hypothetical case as soon as one also considers that diago-
nalization is involved. There is no evidence whatsoever that generalizing to the translation
procedure to the very special case of translation a decision procedure for FOL-provability (or
any case of provability reducible to FOL-provability) and diagonalizing it will still preserver
the correctness of the translation procedure. This special case is not comparable to known
positive cases since by meta-mathematical reasoning, we know that in the special diagonal
case, no propositional Σ1-function P (x) can capture provability. The meta-mathematical
interpretation of ¬P (dγe) as “dγe is not provable” is contradictory to what is provable,
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i.e., both in the case of the provability of ¬P (dγe) and in the case of the unprovability
of ¬P (dγe), which implies the provability of P (dγe) due to capturing. This situation has
no equivalent among the usual cases, and a reliable means of interpreting this situation in
advance has not been determined.

Since capturing and expressing are equivalent in the case of Σ1-functions, the situation
can be interpreted in two ways: either P (x) does not exist since FOL is not decidable
(the standard understanding), or FOL-provability is not expressed by the translation of
the assumed decision function into P (x) (the alternative understanding). The standard
understanding rests on the belief that the translation procedure correctly generalizes to the
abnormal diagonal case ¬P (dγe); the alternative understanding questions this generalization
due to the differences between the cases and the fact that no positive evidence can be
provided that =M and =A are also isomorphic in this diagonal case. In fact, the alternative
understanding denies that =M and =A are correlated in the abnormal diagonal case of
provability: the truth values of “dγe is not provable” and the corresponding arithmetic
interpretations of ¬P (dγe) may well be different.

Church’s proof reduces the assumption that FOL (and, consequently, Q) is decidable to
absurdity. This presumes the standard understanding. However, the proof by contradiction
is underdetermined since the alternative understanding cannot be ruled out. According
to this understanding, the assumption that =M (¬P (dγe)) is coextensive to =A(¬P (dγe))
is reduced to absurdity. If =M (¬P (dγe)) 6= =A(¬P (dγe)), then FOL-provability is not
expressed because expressing is defined only in relation to =A (cf. Definition 2.1). Given
that, for example, ¬P (dγe) is provable in Q, =A(¬P (dγe)) is true due to Q’s soundness,
while =M (¬P (dγe)) is false: According to the alternative understanding, this may well be
the case.

There is no reason to infer that Q is not sound (or even is inconsistent) according
to the alternative understanding since soundness is defined in relation to the standard
arithmetic interpretation =A. One might say that Q is not sound with respect to an intended
meta-mathematical interpretation =M in the diagonal case ¬P (dγe). However, it is more
appropriate to say that a meta-mathematical interpretation =M (¬P (dγe)) is not admissible
in this case, or simply that FOL-provability is not expressible (or definable) within LA

because the intended meta-mathematical interpretation fails in the diagonal case.
In the alternative understanding, undecidability proofs are interpreted as undefinability

proofs, such as Tarski’s proof of his theorem that LA-truth cannot be expressed within LA.
In fact, Church’s proof is much more similar to Tarski’s proof than to Gödel’s proof: in
Church’s proof as well as in Tarski’s, it is hypothetically assumed that a certain property
(FOL- or Q-provability / truth according to =A) can be expressed in LA and this is reduced
to absurdity on the basis of the consistency or soundness of Q, the Diagonalization Lemma
and the diagonalization of the propositional function in LA that is assumed to express the
property in question. The key difference of undefinability proofs and Gödel’s incompleteness
proof is not between the semantic and syntactic properties but between an indirect proof
based on the hypothesis of expressing a property (Tarski, Church) and an indirect proof
based merely on the presumption of capturing a property while providing a propositional
function (∃yB(y, x)) that expresses the property in question (PA-provability) without cap-
turing it (Gödel). The former can be used to reduce expressing a property to absurdity,
while the latter can only be used to reduce capturing a property to absurdity. The only
reason why Church’s proof is taken as an undecidability proof rather than as an undefin-
ability proof is the belief in the expressing theorem, which applies to recursive functions.
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However, according to the alternative understanding the general validity of this theorem is
what is in question.

In the remainder of this section and the next section ??, I intend to provide further
evidence that this is not an hopeless, idiosyncratic alternative understanding conceived of
by a wrong-headed mind but rather an obvious interpretation that cannot be ruled out in
advance.

2.4.4. Inadmissible Interpretations. The proof of the expressing theorem relies on arithmetic
interpretations of the recursively defined functions and the LA translations. Thus, it is evi-
dent that it does not apply to the question of whether FOL-provability is also expressible in
LA. Instead, this claim is based on the further assumption that =A and =M are coextensive
in any arbitrary case. This coextensionality is confirmed in many cases, but the question
is whether the postulated isomorphism also holds in the abnormal diagonal case of FOL-
provability. Nothing within the proof of the expressing theorem or in the undecidability
proofs justifies this assumption.

Instead, the meta-mathematical reasoning leaves open the option of reducing to ab-
surdity the assumption that P (x), in fact, expresses provability, and consequently, it is
questionable whether =A and =M are correlated in the diagonal case of P (x). Moreover,
there is evidence that intended interpretations of diagonal cases do not obey the extensional
semantics of a language based on FOL and, therefore, are inadmissible.

It is a common phenomenon that effective procedures for translating expressions in
one language into FOL formulas with intended interpretations may fail because the trans-
lated expressions do not behave in accordance with the semantics of FOL. The theory
of logical formalization and philosophical logics are full of examples. One standard ex-
ample from intensional logic is as follows: One may define a translation procedure for
translating sentences of the grammatical form “Person P φs a ψ” into FOL formulas of
the form “∃x(φ(P, x) ∧ ψ(x))”. If one applies this procedure to “Jack loves a woman”,
it works fine. However, applying it to “Jack seeks a unicorn” fails since ∃xψ(x) follows
from ∃x(φ(P, x) ∧ ψ(x)) but “Some unicorn exists” does not follow from the truth of the
proposition that someone seeks a unicorn.

The common explanation for this fact is that “seeking” is not a predicate that be-
haves in accordance with the principle of extensionality of FOL semantics since the object
one seeks is not an object of reference. Such examples are no reason to question the
soundness of FOL since soundness is defined in relation to admissible interpretations that
do behave in accordance with the semantics of FOL (and not in relation to arbitrary in-
stances/paraphrases/intended interpretations of FOL formulas). Instances/paraphrases or
intended interpretations that do not behave in accordance with the semantics of FOL are
inadmissible. They cannot be expressed (defined, represented) by propositional FOL func-
tions. FOL would become unsound if its soundness were measured in relation to such
interpretations. However, this is not what is done. Instead, the interpretations are with-
drawn as admissible interpretations of a language based on FOL. Translations of expressions
on the basis of inadmissible interpretations are not correct.

It is important to note the phenomenon of inadmissible interpretations where the ques-
tion of expressing properties by means of propositional functions is concerned. Any proof
based on expressing properties in FOL that are defined in another language must not be
threatened by the possibility of inadmissible interpretations. We know, however, from many
semantic and logical paradoxes that predicates such as “x is not true”, “x is heterological”,
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“x is a set of normal sets”, “x is a Richard number”, etc., are not expressible by proposi-
tional FOL functions without implementing certain restrictions on or changes to the syntax
and/or semantics of FOL (e.g. type theory or the distinction between meta-language and
object language). The reason is always the diagonal case, which gives rise to contradictions
due the intended interpretations, thus showing that they are inadmissible.

One possible way to explain this inadmissibility is to maintain that the intended in-
terpretations involved do not behave in accordance with the extensional principles of FOL
semantics in the diagonal case since this case implies an intended self-reference. Wittgen-
stein is a prominent advocate of such an analysis (cf., e.g., TLP 3.33-3.334; WVC, p. 121;
and PR, p. 207f.). According to him, an expression must share its form with the object to
which it refers. In the case of self-reference, however, there is an ambiguity of form; dγe is
an argument and, thus, part of a sentence, and it refers to the very sentence of which it is
part. This ambiguity may induce the impossibility to refer properly in the diagonal case.
This, in turn, may cause contradictions and, hence, inadmissible interpretations. Accord-
ing to my understanding, this analysis motivates Wittgenstein’s critique of undecidability
proofs (cf. RFM, I, appendix I, §12f, §19). The meta-mathematical interpretation =M of a
presumed propositional function ¬P (x) in terms of unprovability fails in the diagonal case
since dγe does not refer properly in this context, similar to the intended self-reference in
the case of a paradox. One should be aware that this ambiguity concerns only =M , not
=A. The crucial difference between these two intended interpretations is the diagonal case:
there is no self-reference involved in the case of =A. This is why =M may be inadmissible
while =A cannot be inadmissible.

Unfortunately, Wittgenstein seemed to believe that his analysis applies not only to
Church’s and Turing’s proofs but also to Gödel’s proof (cf. [Lampert (2018a)] for details).
In contrast, I neither maintain that a Wittgensteinian analysis applies in general nor that
it is the only possible one. I merely claim that it is one possible explanation of why one can
reasonably doubt the assumed expressibility of FOL-provability within a language based
on FOL despite the fruitfulness and success of expressing meta-mathematical properties
within LA. The analysis of paradoxes is a highly controversial topic. I do not believe that
the question in how far undecidability proofs are affected by inadmissible interpretations
giving rise to paradoxes can be solved by adhering to a rather philosophical or foundational
discussion. I do not intend to argue for any particular view on paradoxes, nor do I presume
a Wittgensteinian analysis of paradoxes. The details of the analysis of paradoxes are not
important for my critique of the Church-Turing theorem and need not be shared. What is
important is that the admissibility of =M in the diagonal case ¬P (dγe) can be reasonably
doubted and that Wittgenstein’s analysis is one possible approach to doing so. No effective
translation procedure, and no reasoning in the case of positive examples of successfully
expressing meta-mathematical properties, can rule out the possibility that the translation
procedure does not successfully express FOL-provability in the case of a given decision
procedure for FOL. To do so, it would be necessary to prove that the intended meta-
mathematical interpretation in the diagonal case is admissible and, thus, does not deviate
in truth value from its arithmetical counterpart. However, this is not proven on the basis of
hypothetical reasoning; the general isomorphism between =M and =A, or the extensionality
of =M in any arbitrary case (including ¬P (dγe)), is stipulated or implicitly assumed, not
proven. That is why the undecidability proof of FOL is not compelling.

Since the undecidability proof is based on hypothetical reasoning concerning the ex-
pressibility of FOL-provability in the diagonal case it can be reasonably doubted. This is
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true even in the case one cannot conceive what exactly goes wrong. Paradoxes (antinomies
or anomolies) come as a surprise evidenced by external reasoning, not by making evident
some internal mistake that may be discovered by going through each step of the proof. The
standard understanding of Church’s proof is not incoherent. Instead, it is an admirable
paradigm of thorough and ingenious reasoning. Yet, it is underdetermined. One may claim
that rigorous proofs should not be underdetermined. However, strictly speaking, any indi-
rect proof based on more than one assumption is underdetermined and leaves the option
open to reduce some alternative assumption to absurdity. The alternative understanding
argues for such an alternative reading of the indirect proof. However, it is likewise under-
determined. Without, in fact, proving that FOL is decidable, Assumption 3 (cf. p. 6)
cannot be refuted. The specification of the FOL-Decider shall serve as external evidence to
reconsider what is taken for granted.

However, given the peculiarity of the hypothetical diagonal case ¬P (dγe) and its analogy
to paradoxes, one may argue that the admissibility of =M is not only not proven in the
diagonal case of P (x) but also unlikely due to the following facts: (i) diagonalization implies
Gödelization and, thus, is involved only in =M , not =A, of the corresponding formulas;
(ii) the diagonal case of a presumed characteristic propositional function P (x) expressing
provability in FOL (or some axiomatic system based on FOL) is designed to rule out the
one-to-one correspondence between the provability of the diagonalization of ¬P (x) in Q
and its meta-mathematical interpretation =M ; and (iii) since the arithmetic interpretation
=A is not affected by diagonalization, it might be the case that =A and =M are no longer
correlated in the diagonal case. Thus, it might well be that in the case of diagonalization,
¬P (dγe) is true (false) according to =M but is false (true) according to =A. However, since
expressing is defined in relation to the arithmetic interpretation (cf. Definition 2.1), this
means that P (x) does not express provability. Consequently, P (x) also does not capture
Q-provability because the capturing theorem presumes the expressing theorem.

To question the correctness of a presumed translation of a decision procedure for FOL
does not, of course, mean that every translation of a recursive function into a Σ1-formula
is questionable. Interpretations of diagonal cases do not necessarily induce contradictions.
Identifying one inadmissible interpretation, however, also does not mean that no other
translation is inadmissible. Similar to the principal question of distinguishing admissible
from inadmissible intended interpretations, one is confronted with the problem of distin-
guishing correct from incorrect translations. Claiming the decidability of FOL does not
mean rejecting undecidability proofs in general. It merely implies that one should not base
undecidability proofs on translations of presumed recursive functions into LA when the
meta-mathematical interpretation induces contradictions. The impossibility of expressing
and capturing FOL-provability in LA or Q is not the correct standard against which to
measure decidability as long as one might likewise interpret Church’s undecidability proof
as a reductio of Assumption 3.

3. Critique of Turing’s Proof

The critique that the correctness of the procedure for translating a decision procedure
into FOL formulas is questionable in the diagonal also applies to Turing’s undecidability
proof of FOL. Turing’s proof relies on Turing’s thesis, which states that anything that is
computable (by a program or by a human being) can be written as a program consisting of
instructions for a Turing machine. As in the case of Church’s thesis, I take this reduction
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of computability for granted. Turing does not refer to Q or to any axiomatic system that is
assumed to be consistent. Instead, he directly specifies a procedure for translating Turing
machines into FOL formulas with an intended interpretation that relates to the behaviour
of the translated machines. His proof is based on a lemma that correlates the provability
of the formalizations of a Turing machine M started with an input I with the occurrence
of M entering a specific configuration or state if started with I (i.e., Turing’s Lemma, cf.
[Turing (1936)], pp. 261f.): the computational behaviour of Turing machines is described by
the intended interpretations of propositional FOL formulas. In modern variants of Turing’s
original proof, the state in question is the halting state, and Turing’s Lemma states that
the formalization Un(M, I) of M (started with I) is provable iff M , started with I, halts.

The question is whether Turing’s Lemma also applies in the case of Turing machines
involving a (hypothetical) Turing machine that decides FOL (i.e., the diagonal case). Turing
bases his proof of Lemma 2,13 which concerns the left-to-right direction of his Lemma, on a
naive principle that must not be confused with the soundness of FOL. He assumes that the
provability of an FOL formula implies the truth of its intended interpretation (i.e., Turing’s
Principle). However, Turing’s intended interpretations are paraphrases of FOL formulas
in terms of descriptions of configurations and of instructions for Turing machines. It is
questionable whether the semantics of FOL that is presumed in any soundness proof of
FOL applies to these paraphrases in any arbitrary case (including diagonal cases). There
are many counter-examples to Turing’s Principle involving non-extensional contexts; given
that diagonalization gives rise to paradoxes, it cannot be assumed that diagonal cases are
extensional and behave in accordance with the semantics of FOL in cases involving intended
interpretations of FOL formulas in terms of descriptions of Turing machines.

Similar to Church’s proof, Turing’s proof assumes that the intended interpretations of
the formulas that translate a decision procedure behave in accordance with the semantics
of FOL even in the diagonal case of interpreting the FOL translations of Turing machines
involving a decision machine for FOL. In analogy to the use of the phrase “expressing a
property in accordance with the standard interpretation of LA”, let us use the phrase “ex-
pressing a property in accordance with an admissible interpretation of FOL”. What is in
question is whether it can be justified that the intended interpretations of FOL formulas
that relate Un(M, I) to the behaviour of the translated machine M started with I behave in
accordance with the semantics of FOL. The problem is not to justify this for given cases but
rather to generalize the admissibility of the intended interpretations to any case, including
hypothetical diagonal cases that induce contradictions. These contradictions can be used
to reduce to absurdity the assumption that the interpretations involved in the diagonal
case are admissible instead of reducing the hypothetical presumed decision procedure to
absurdity. On the basis of this indeterminacy, one can use Turing’s Principle as a crite-
rion for identifying inadmissible intended interpretations rather than referring to it as an
assumption of the undecidability proof: if an intended interpretation of a provable formula

13Cf. [Turing (1936)], p. 262. The proof of Turing’s Lemma 2 consists of only two sentences. In the
first sentence, Turing quotes his general principle: “If we substitute any propositional functions for function
variables in a provable formula, we obtain a true propositions.” Function variables is Turing’s term for
open formulas, and propositional functions his term for instances (or intended interpretations) of the open
formulas. The second sentence of his proof then applies this general principle to his intended interpretations
of the function variables in Un(M, I) in order to infer the truth of the intended interpretation of Un(M, I)
in the case of its provability.
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is not true (but rather is either false or somehow ambiguous or meaningless), then it is
inadmissible.

Turing’s Lemma is the analogue to capturing theorem, which is based on the expressing
theorem. Similar to the questionable general validity of the expressing theorem, the question
is whether the general claim of Turing’s Lemma also applies to the specific diagonal case
of the presumed decision procedure for FOL. The specific assumption that is the analogue
to the specific Assumption 3 of Church’s proof can be formulated regarding the halting
problem as follows:

Assumption 3’: The decidability of FOL implies the existence of an FOL formaliza-
tion Un(M, I) for a combination of Turing machines M involving a decision machine
for FOL and started with input I, such that Un(M, I) expresses the halting of M
in accordance with an admissible interpretation of Un(M, I) (even in the diagonal
case).

Questionable is neither the existence of a well-defined translation procedure resulting
in Un(M, I) given M and I nor one’s ability to paraphrase Un(M, I) in accordance with an
intended interpretation such that the paraphrase states that M halts if M is started with
I. The question is whether the provability of Un(M, I), in fact, correlates with the truth
of the intended interpretation in the diagonal case.

It is clear that the fact that the assumption of a decision machine for FOL contradicts
Turing’s Lemma. To see this, one needs to consider diagonal cases (similar to Church’s
proof). It is sufficient to consider a set of machines M that ends in a combination of a
decision machine FOL for FOL with the dithering machine D. FOL returns exactly one
stroke iff its input formula is provable. The dithering machine halts iff its input is not
identical to exactly one stroke (cf. [Boolos et al. (2003)], p. 39). As an example of such a
set of machines ending with FOLD, one might consider the machine CTFOLD, composed
of (i) a copy machine C that copies the number of strokes with which it is started (cf.
[Boolos et al. (2003)], p. 39) and (ii) a translation machine T that generates a formula
Un(M, I) given the description number of M and the input I of M . When started with
its own description number i, CTFOLD generates a formula Un(CTFOLD, i), which is
provable iff CTFOLD does not halt when started with its own number. This contradicts
Turing’s Lemma. The question, however, is whether one should interpret this result as a
reduction to absurdity of FOL or whether one should interpret it as a reduction to absurdity
of the admissibility of the intended interpretation in this diagonal case and, therefore, reject
Assumption 3’ (and, consequently, the general validity of Turing’s Lemma). Similar to the
various versions of Church’s proof, the versions of Turing’s proof do not provide a forcible
reason to answer this question. Hence, these proofs are underdetermined.

By referring to intended interpretations of logical formalizations of Turing machines,
Turing’s proof reaches beyond what must be conceded if one does not take for granted the
admissibility of intended interpretations, particularly if diagonalization is involved. Instead
of inferring that FOL is undecidable, one might reject the general validity of Turing’s
Lemma since it does not apply to cases such as CTFOLD started with its own number.
The provability of Un(CTFOLD, i) will not be correlated with the truth of the paraphrase
of Un(CTFOLD, i) according to the intended interpretation: Un(CTFOLD, i) may be
provable, while CTFOLD started with i does not halt. There is no evidence that this may
not happen since we cannot generalize known, normal cases of applying Turing’s Lemma to
the abnormal, hypothetical diagonal cases such as CTFOLD started with its own number.
According to this critique, it may well be that FOL is sound and decidable and that the



22 LAMPERT

halting problem (or some other unsolvable problem) is not solvable: what one must reject is
the claim that the intended interpretations of the logical formalizations of Turing machines
are admissible in any arbitrary case.

Modern versions of Turing’s undecidability proof refer to the logical validity (truth in
all interpretations), instead of the provability, of Un(M, I) (cf., e.g., [Boolos et al. (2003)],
chapter 11.1). Here, the proof of the analogue to Lemma 2 (cf. [Boolos et al. (2003)],
p. 130) implies that “truth in all interpretations” specifically applies to the intended in-
terpretations involved. However, this is the case only if the intended interpretations are
admissible, since “all interpretations” refers to all interpretations that obey the principles
of FOL semantics. Questions concerning the admissibility of interpretations are related to
the application of formal logic to meaningful propositions. The literature on the formal-
ization and application of FOL to meaningful propositions is full of examples that show
that meaningful propositions may not behave in accordance with the principles of the ex-
tensional semantics of FOL. Problems regarding the relation of the syntax and semantics
of FOL to meaningful propositions of some other language should not affect rigorous proofs
concerning the limits of what can be decided by purely formal means.
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